∆PQR is isosceles in which PQ =QR . PS IS THE ALTITUDE.<Q=50°. Find the value of <RPS
Answers
Answered by
1
Answer:
angle RPS=25°
Step-by-step explanation:
in triangle PQR,
PQ=QR
angle QRP=angle QPR=x
angle PQR +angle QRP +angle QPR=180°(angle sum
property)
50°+x+x=180°
50+2x=180°
2x=180-50=130°
x=130/2=65°
therefore, angle QRP=angle QPR=65°
in triangle PSQ,
angle PSQ=90° and angle SQP=50°
angle PSQ+angleSQP+angle SPQ=180°
90°+50°+angle SPQ=180°
140°+angle SPQ=180°
angle SPQ=180°-140°=40°
angle RPS=angle QPR-angleQPS
=65°-40°=25°
Similar questions