PQR is isosceles right angle, right angled at Q. Prove that
Attachments:
Answers
Answered by
1
Answer:
PR²=2PQ²
Step-by-step explanation:
Given:
- ∆PQR is isosceles,
- PQ=QR
- mQ=90°
To Prove:
- PR²=2PQ²
Proof:
- in ∆PQR , due to it is a right angled triangle,
- by Pythagorean theorem, PQ²+QR²=PR²........................................(i)
- due to it is a isosceles , PQ=QR......................................................(ii)
- now,by putting the value of QR from equation (ii) in equation (i), we get,
- PQ²+PQ²=PR²
- 2PQ²=PR²(proved)
- thank u.................
- please mark as brainliest
Similar questions