∆PQR is such that P = Q = R = 60° which of the following is true a) ∆PQR is equilateral b) ∆PQR is acute angled c) both a and b c) neither a nor b
Answers
Let ∠Q = ∠R = x, ∠p = 60°
Let ∠Q = ∠R = x, ∠p = 60°But ∠P + ∠Q + ∠R = 180°
Let ∠Q = ∠R = x, ∠p = 60°But ∠P + ∠Q + ∠R = 180°∴ 60° + x + x = 180°
Let ∠Q = ∠R = x, ∠p = 60°But ∠P + ∠Q + ∠R = 180°∴ 60° + x + x = 180°⇒ 60° + 2X = 180°
Let ∠Q = ∠R = x, ∠p = 60°But ∠P + ∠Q + ∠R = 180°∴ 60° + x + x = 180°⇒ 60° + 2X = 180°⇒ 2x = 180° - 60° = 120°
Let ∠Q = ∠R = x, ∠p = 60°But ∠P + ∠Q + ∠R = 180°∴ 60° + x + x = 180°⇒ 60° + 2X = 180°⇒ 2x = 180° - 60° = 120°⇒ x = 120°/2 = 60°
Let ∠Q = ∠R = x, ∠p = 60°But ∠P + ∠Q + ∠R = 180°∴ 60° + x + x = 180°⇒ 60° + 2X = 180°⇒ 2x = 180° - 60° = 120°⇒ x = 120°/2 = 60°∴ ∠Q = ∠R = 60°
Let ∠Q = ∠R = x, ∠p = 60°But ∠P + ∠Q + ∠R = 180°∴ 60° + x + x = 180°⇒ 60° + 2X = 180°⇒ 2x = 180° - 60° = 120°⇒ x = 120°/2 = 60°∴ ∠Q = ∠R = 60°Hence, ∠R = 60°