Math, asked by ruby73, 1 year ago

PQRS is a quadtilateral in which PQ// SR and PQ and QS intersect each other at O. Prove that PO/RO= QO/SO​

Answers

Answered by choudhary3232
1

given that ,

 PQRS is a quadrilateral  in which diagonal PR and QS intersect at a O . 

to prove - PQ +QR +RS+SP < 2 ( PR + QS ) 

 proof -

       we know that sum of any two side of a triangle is greater than the third side .

.'. in Δ PQO , 

       PO+QO>PQ ,  .......................(i)

    in Δ SOP  

        SO + PO >PS , .........................(ii)

   in Δ SOR 

       SO + OR > RS  ...........................(iii)

   in Δ QOR , 

     QO + OR > QR ...........................(iv)

on adding eqn. i , ii , iii & iv 

    we get ,

PO+QO+SO+PO+SO+OR+QO+OR > PQ+PS+SR+QR 

also ⇒ 2 ( PO + QO + SO + OR ) > PQ+PS+SR + QR 

       = 2( PR + QS ) > PQ+PS+RS + QR  ( proved) ....


choudhary3232: welcome
ruby73: Hii its ruby
choudhary3232: kya
ruby73: what
choudhary3232: ok
ruby73: Ok
Similar questions