Math, asked by kush221005, 1 year ago

pqrs is a square and poq is an equilateral triangle. what is the value of angle sor​

Attachments:

Answers

Answered by lublana
18

The value of SOR=150^{\circ}

Step-by-step explanation:

PQRS is a square

Angle P=Angle S=Angle Q=Angle R=90 degrees

POQ is an equilateral triangle

Angle POQ=Angle OQP=Angle OPQ=60 degrees

\angle OQR=\angle Q-\angle PQO=90-60=30^{\circ}

\angle OPS=\angle P-\angle OPQ=90-60=30^{\circ}

QO=QR

Angle QRO=Angle QOR

Reason: Angle made by two equal sides are equal

PO=PS

Angle POS=Angle PSO

In triangle ORQ

\angle QRO+\angle QOR+\angle OQR=180

Triangle angles sum property

Substitute the values then we get

\angle QRO+\angle QRO+30=180

2\angle QRO=180-30=150

\angle QRO=\frac{150}{2}=75^{\circ}

In triangle POS

\angle POS+\angle PSO+\angle OPS=180

Triangle angles sum property

Substitute the values then we get

\angle POS+\angle PSO+30=180

2\angle POS=180-30=150

\angle POS=\frac{150}{2}=75^{\circ}

Angle POQ+angle QOR+angle POS+angle SOR=360 degrees=Complete angle

Substitute the values then we get

75+75+60+\angle SOR=360

\angle +210=360

\angle SOR=360-210=150^{\circ}

#Learns more:

https://brainly.in/question/1146808;answered by brainly user

Similar questions