PQRS is a square whose diagonal PR is joined. Prove that trianglePQR is congruent trianglePSR
Answers
Answered by
25
Step-by-step explanation:
given that it is a square.. square is a quadrilateral with all sides equal and all angles 90 degree..
consider triangle PQR AND PSR
ANGLE pqr=ANGLE psr (right angle)
PR = PR ( common side)
PQ=SR(SIDES OF SQUARE)
Therefore...
triangle PQR congruent to triangle PSR
(BY R.H.S CONGRUENCE)
Attachments:
Answered by
25
Step-by-step explanation:
given
PQRS is a square, PR and QS are diagonals
to prove
PQR is congruent to PSR
proof
PR=PR (common side)
PQR =RSP (alternate angles)
RQP =PSR (alternate angles)
therefore triangle
PQR is congruent to triangle PSR
ASA congruence rule
Similar questions