PQRS is an isosceles trapezium in which PQ RS and PS = RQ . if RT is drawn parallel to PS prove that
Answers
Answered by
2
Answer
Inequilateral△ERQ,∠REQ=∠EQR=∠QRE=60 °
GivenPQ∥SR,letRQbethetransversalthen∠SRQ+∠RQP=180°
{SumofInteriorcorrespondingangles=180 °}
Soweget∠SRQ=180−60=120 °
{∠RQP=∠EQR=60 °}
Weknowthatinaisoscelestrapeziumbaseanglesareequal.
So∠SPQ=∠RQP=60 °
GivenPQ∥SR,letSPbethetransversalthen∠RSP+∠SPQ=180°
{SumofInteriorcorrespondingangles=180 °}
Soweget∠RSP=180−60=120 °
∴Themeasuresofthetrapeziumare:∠RSP=120 °°
,∠SRQ=120 °
,∠RQP=60 °
,∠QPS=60 °
Thank you ☺️
Similar questions