Math, asked by amishadcmc, 1 year ago

PQRS is square and angle abc =90° as shown in fig. If AP = BQ = CR, then prove that angleBAC = 45°

Attachments:

brahatesh: Where is the figure

Answers

Answered by sarahssynergy
13

given square PQRS , prove that angle BAC= 45°

Explanation:

  1. given square PQRS hence we have, PQ=QR=RS=SP=2x.
  2. in rectangle APQC , AC=PQ=2x and AP=QC
  3. Since it is given that AP=BQ=CR we can say QC=CR also QR=QC+CR=2x and PQ=PB+BQ=2x        
  4. hence from above points we get , AP=PB=BQ=QC=x  
  5. in triangles APB and BQC we have , AB=BC=\sqrt{x^2+x^2} =x\sqrt{2}  
  6. now in triangle ABC let angle BAC be θ then,                                                         tanθ=\frac{BC}{AB} = \frac{x\sqrt{2} }{x\sqrt{2} }=1                                                                                                     θ=45°          
  7. hence proved that angle BAC is 45°

                                                         

Answered by dtuhin174
7

Answer:

in the figure pqrs is a square

Attachments:
Similar questions