Math, asked by mastermarvel73, 1 month ago

Prabhav has 4800 in his account and the interest rate is 5%. How many years later will he earn an interest of ₹ 480?​

Answers

Answered by StormEyes
8

Solution!!

The concept of simple interest has to be used here. The principal, rate of interest and simple interest is given in the question. We have to find the time.

Principal = Rs 4800

Interest = Rs 480

Rate of interest = 5%

Time = ?

We will use the interest formula to find the time.

SI = (P × R × T)/100

480 = (4800 × 5 × T)/100

480 = 48 × 5 × T

480 = 240 × T

T = 480 ÷ 240

T = 2

Hence, the time is 2 years.

The questioner may ask you to find the amount also. So, here's how you can find it.

Amount = Principal + Interest

Abbreviations used:-

P → Principal

R → Rate of interest

T → Time

SI → Simple interest

Answered by Anonymous
171

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\pink{Given:}}}}}}\end{gathered}

  • » Prabhav has 4800 in his account and the interest rate is 5%.

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\pink{To Find:}}}}}}}\end{gathered}

  • » How many years later will he earn an interest of ₹ 480?

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\pink{Formula Used:}}}}}}\end{gathered}

 \dag{\underline{\boxed{\sf{S.I = \dfrac{P \times R \times T}{100}}}}}

Where

  • \dashrightarrow \sf{S.I = Simple \:  Interest }
  • \dashrightarrow {\sf{P = Principle}}
  • \dashrightarrow{\sf{R = Rate}}
  • \dashrightarrow{\sf{T = Time}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\pink{Solution:}}}}}}\end{gathered}

\bigstar \: {\underline{\pmb{\frak{\red{Here}}}}}

  • \dashrightarrow \sf{Interest = Rs.480}
  • \dashrightarrow  \sf{Principle = Rs.4800}
  • \dashrightarrow \sf{Rate = 5 \%}

\begin{gathered}\end{gathered}

\bigstar \: {\underline{\pmb{\frak{\red{According \:  to  \: the \:  question }}}}}

 \quad{: \implies{\sf{S.I = \bf{\dfrac{P \times R \times T}{100}}}}}

  • Substituting the values

\quad{: \implies{\sf{480= \bf{\dfrac{4800 \times 5 \times T}{100}}}}}

\quad{: \implies{\sf{480= \bf{\dfrac{24000\times T}{100}}}}}

\quad{: \implies{\sf{480 \times 100= \bf{24000\times T}}}}

\quad{: \implies{\sf{48000= \bf{24000\times T}}}}

\quad{: \implies{\sf{\dfrac{48000}{24000}  =  \bf{T}}}}

\quad{:\implies{\sf{\cancel{\dfrac{48000}{24000}} =  \bf{T}}}}

\quad{: \implies{\sf{2 =  \bf{T}}}}

 \dag{\underline{\boxed{\sf{Time = 2 \: years}}}}

  • ➤ Henceforth,The Time is 2 years.

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\pink{Learn More :}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions