Practice set 1( mathamatics) Important for jee mains exam
Answers
EXPLANATION.
AB is a vertical pole and C is the middle point.
End A is on the level ground.
P at any point on the level ground other then A.
Portion CB subtends an angle β at P.
⇒ AP : AB = 2 : 1.
As we know that,
⇒ AP/AB = 2/1.
⇒ AP = 2AB.
Let we assume that,
Height of AC & AC = h.
⇒ AB = AC + CB.
⇒ AB = h + h = 2h.
⇒ AP = 2(2h) = 4h.
⇒ AP = 4h.
In ΔAPB.
⇒ tanθ = perpendicular/base = p/b.
⇒ tanα = h/4h = 1/4.
⇒ tan(α + β) = 2h/4h.
⇒ tan(α + β) = 1/2.
As we know that,
Formula of :
⇒ tan(α + β) = tanα + tanβ/1 - tanα.tanβ.
⇒ tanα + tanβ/1 - tanα.tanβ = 1/2.
⇒ 1/4 + tanβ/1 - 1/4.tanβ = 1/2.
⇒ 1 + 4tanβ/4/4 - tanβ/4 = 1/2.
⇒ 1 + 4tanβ/4 - tanβ = 1/2.
⇒ 2(1 + 4tanβ) = 4 - tanβ.
⇒ 2 + 8tanβ = 4 - tanβ.
⇒ 8tanβ + tanβ = 4 - 2.
⇒ 9tanβ = 2.
⇒ tanβ = 2/9.
⇒ β = tan⁻¹(2/9).
Option [D] is correct answer.
Answer:
let ∠APC be α
Given :-
∠BPC = β
and
AP:AB = 2:1
→ AP = 2AB
C is the midpoint of AB.
let AC = BC = x
then,
AB = 2x and AP = 4x
Now, In ΔCAP,
again, In ΔBAP,
putting the value of tanα in the above eqn:-