Math, asked by MiniDoraemon, 5 hours ago

Practice set 1( mathamatics) Important for jee mains exam ​

Attachments:

Answers

Answered by amansharma264
6

EXPLANATION.

Image of the point (-8,12)

The line mirror 4x + 7y + 13 = 0.

As we know that,

Slope of the perpendicular line = b/a.

Slope of the line 4x + 7y + 13 = 0 is 7/4.

Formula of :

Equation of the line.

⇒ (y - y₁) = m(x - x₁).

Put the values in the equation, we get.

⇒ (y - 12) = 7/4(x - (-8)).

⇒ (y - 12) = 7/4(x + 8).

⇒ 4(y - 12) = 7(x + 8).

⇒ 4y - 48 = 7x + 56.

⇒ 7x + 56 - 4y + 48 = 0.

⇒ 7x - 4y + 104 = 0.

Solving both the equation, we get.

⇒ 4x + 7y + 13 = 0. - - - - - (1).

⇒ 7x - 4y + 104 = 0. - - - - - (2).

Multiply equation (1) by 4.

Multiply equation (2) by 7.

⇒ 4x + 7y + 13 = 0. - - - - - (1). x 4.

⇒ 7x - 4y + 104 = 0. - - - - - (2). x 7.

We get,

⇒ 16x + 28y + 52 = 0. - - - - - (3).

⇒ 49x - 28y + 728 = 0. - - - - - (4).

Adding equation (3) & (4), we get.

⇒ 65x + 780 = 0.

⇒ 65x = - 780.

⇒ x = - 780/65.

⇒ x = - 12.

Put the value of x = - 12 in the equation (1), we get.

⇒ 4x + 7y + 13 = 0.

⇒ 4(-12) + 7y + 13 = 0.

⇒ - 48 + 7y + 13 = 0.

⇒ 7y - 35 = 0.

⇒ 7y = 35.

⇒ y = 5.

Values of x = - 12 and y = 5.

Their Co-ordinates = (-12,5).

Point O is the mid-point of the line.

Mid-point formula = (a + b)/2.

⇒ (α - 8)/2 = - 12.

⇒ α - 8 = - 24.

⇒ α = - 16.

⇒ (β + 12)/2 = 5.

⇒ β + 12 = 10.

⇒ β = - 2.

The Co-ordinates = (-16,-2).

Option [D] is correct answer.

Answered by ridhya77677
1

Answer:

(d) is the correct answer.

Attachments:
Similar questions