Math, asked by abishekrai54321, 8 months ago

PRE PER
The volume of two spheres are in the ratio 27:8. find their ratio of surface area?
SECTI​

Answers

Answered by Anonymous
30

Answer :

➥ The surface area of ratio = 9:5

Given :

➤ Volume ratio = 27:8

To Find :

➤ Surface area ratio = ?

Solution :

 \bf{: \implies Volume =  \dfrac{4}{3}\pi {r}^{3}  }

Let radius be "r₁" and "r₂"

 \tt{: \implies  \dfrac{  \cancel{\dfrac{4}{3} \pi } {r_{1}}^{3} }{  \cancel{\dfrac{4}{3} \pi}{r_{2}}^{3}}  =  \dfrac{27}{8} }

 \tt{:\implies  \dfrac{ r_{1}}{ r_{2}} =  \sqrt[3]{\dfrac{27}{8}}}

\tt{:\implies  \dfrac{ r_{1}}{ r_{2}} =  \dfrac{3}{2} }

Surface area = 4πr²

 \tt{: \implies \dfrac{ \cancel{4\pi} r_{1}^{2} } { \cancel{4\pi} r_{2}^{3}}}

 \tt{: \implies  \dfrac{r_{1}^{2}}{r_{2}^{2}} }

 \tt{: \implies  \dfrac{ {(3)}^{2} }{ {(2)}^{2} } }

 \tt{: \implies  \dfrac{9}{4} }

 \tt{: \implies \green{ \underline{ \overline{ \boxed{ \purple{ \bf{ \:  \: 9:4 \:  \:  }}}}}}}

Hence, the surface area ratio is 9:4.

Similar questions