prepare a magic square so that the sum of number in each row in each column and each diagonals is (-6)
Answers
Answer:
solution 7: (i)
Sum of the rows
Row 1 = 5+\left(-1\right)+\left(-4\right)
5-1-4\ =\ 0
Row 2 = \left(-5\right)+\left(-2\right)\ +7
-5-2+7\ \ =0
Row 3 = 0+3+\left(-3\right)
0+3-3\ \ =0\
Sum of the columns
Column 1 = 5+\left(-5\right)+0
5-5+0\ =\ 0
Column 2 = \left(-1\right)+\left(-2\right)+\ 3\
-1-2+3\ \ =\ 0
Column 3 = \left(-4\right)+7\ +\left(-3\right)
-4\ +7\ -3\ \ =\ 0
Sum of the diagonals
Diagonal 1
\left(5\right)+\left(-2\right)+\left(-3\right)
5-2-3\ \ =\ 0
Diagonal 2
\left(-4\right)+\left(-2\right)\ +0\
-4-2+0\ =\ -6
Box (i) is not a square because all the sums not equal.
(ii)
Sum of the rows
Row 1 = 1+\left(-10\right)\ +0
1-10+0\ =-9
Row 2 = \left(-4\right)+\left(-3\right)+\left(-2\right)
-4-3-2\ \ \ =\ -9
Row 3 = \left(-6\right)+4+\left(-7\right)
-6+4-7\ \ =\ -9
Sum of the columns
Column 1 = 1+\left(-4\right)+\left(-6\right)
1-10\ =-9
Column 2 = \left(-10\right)+\left(-3\right)+4
-10\ -3+4\ \ =\ -9
Column 3 = 0+\left(-2\right)+\left(-7\right)
0-2-7\ \ =\ -9
Sum of the diagonals
Diagonal 1
1+\left(-3\right)+\left(-7\right)
1-10\ =\ -9\
Diagonal 2
0+\left(-3\right)+\left(-6\right)
-3-6\ =\ -9
Box (ii) is a magic square because all the sums are equal.