prepare a speech in "conversation of water "using following points
need of conversation
methods of conversation
future plans to increase water sources
Answers
Answer:
prepare a speech in "conversation of water "using following points need of conversation
methods of conversation
future plans to increase water sources
Water conservation includes all the policies, strategies and activities to sustainably manage the natural resource of fresh water, to protect the hydrosphere, and to meet the current and future human demand. Population, household size, and growth and affluence all affect how much water is used. Factors such as climate change have increased pressures on natural water resources especially in manufacturing and agricultural irrigation.[1] Many US cities have already implemented policies aimed at water conservation, with much success.[2]
The goals of water conservation efforts include:
Ensuring availability of water for future generations where the withdrawal of freshwater from an ecosystem does not exceed its natural replacement rate.
Energy conservation as water pumping, delivery and wastewater treatment facilities consume a significant amount of energy. In some regions of the world over 15% of total electricity consumption is devoted to water management.
Habitat conservation where minimizing human water use helps to preserve freshwater habitats for local wildlife and migrating waterfowl, but also water quality.
Water shortage has become an increasingly difficult problem to manage. More than 40% of the world's population live in a region where the demand for water exceeds its supply. The imbalance between supply and demand, along with persisting issues such as climate change and exponential population growth, has made water reuse a necessary method for conserving water.[25] There are a variety of methods used in the treatment of waste water to ensure that it is safe to use for irrigation of food crops and/or drinking water.
Seawater desalination requires more energy than the desalination of fresh water. Despite this, many seawater desalination plants have been built in response to water shortages around the world. This makes it necessary to evaluate the impacts of seawater desalination and to find ways to improve desalination technology. Current research involves the use of experiments to determine the most effective and least energy intensive methods of desalination.[26][27]
Sand filtration is another method used to treat water. Recent studies show that sand filtration needs further improvements, but it is approaching optimization with its effectiveness at removing pathogens from water.[28][29] Sand filtration is very effective at removing protozoa and bacteria, but struggles with removing viruses.[30] Large-scale sand filtration facilities also require large surface areas to accommodate them.
The removal of pathogens from recycled water is of high priority because wastewater always contains pathogens capable of infecting humans. The levels of pathogenic viruses have to be reduced to a certain level in order for recycled water to not pose a threat to human populations. Further research is necessary to determine more accurate methods of assessing the level of pathogenic viruses in treated wastewater.