Math, asked by raonarsingh663, 10 months ago

prepare question and solution of quadrilateral​

Answers

Answered by dhru5465
4

Step-by-step explanation:

Question 1:

Diagonals of a parallelogram WXYZ intersect each other at point O. If ∠∠XYZ = 135∘135° then what is the measure of  ∠∠XWZ and  ∠∠YZW ?

If l(OY)= 5 cm then l(WY)= ?

ANSWER:

In a parallelogram, opposite angles are congruent. 

∠∠XYZ = ∠∠XWZ = 135∘135° 

Also, WX || ZY

So, ∠∠YZW + ∠∠XWZ = 180°°                   (Since, interior angles on the same side of the transversal are supplementary)

⇒∠YZW+135°=180°⇒∠YZW=45°⇒∠YZW+135°=180°⇒∠YZW=45°

Now l(OY)= 5

we know that diagonals of a parallelogram bisect each other. 

So, l(WY) = 2×OY=2×5=10 cm2×OY=2×5=10 cm

Page No 62:

Question 2:

In a parallelogram ABCD, If ∠∠A =(3x + 2)∘3x + 2° , ∠∠B = (2x − 32)∘2x - 32° then find the value of x and then find the measures of  ∠∠C and  ∠∠D.  

ANSWER:

Interior angles on the same side of the transversal are supplementary.

∠∠A +∠∠B = 180°°

⇒⇒(3x + 12)∘3x + 12° + (2x − 32)∘2x - 32° = 180°°

⇒5x−20=180°⇒5x=200⇒x=40°⇒5x-20=180°⇒5x=200⇒x=40°

Thus, ∠∠A = 3×40°+12=132°3×40°+12=132°

∠B=2x−32=2×40°−32=48°∠B=2x-32=2×40°-32=48°

Also, opposite angles of a parallelogram are congruent.

∠A=∠C=132°∠B=∠D=48°∠A=∠C=132°∠B=∠D=48°

Page No 62:

Question 3:

Perimeter of a parallelogram is 150 cm. One of its sides is greater than the other side by 25 cm. Find the lengths of all sides.

ANSWER:

Perimeter = 150 cm

Let one of the sides be x.

Other side = x+25x+25

Perimeter = Sum of all sides

x+x+(x+25)+(x+25)=150⇒4x+50=150⇒4x=100⇒x=25x+x+x+25+x+25=150⇒4x+50=150⇒4x=100⇒x=25

Thus, the sides are 25 cm, 25 cm, 50 cm and 50 cm

 

Page No 62:

Question 4:

If the ratio of measures of two adjacent angles of a parallelogram is 1 : 2, find the measures of all angles of the parallelogram.

ANSWER:

Let the two adjacent angles be x and 2xx and 2x.

Interior angles on the same side of the transversal are supplementary.

So, 

x+2x=180°⇒3x=180°⇒x=60°x+2x=180°⇒3x=180°⇒x=60°

Thus, the adjacent angles are 60° and 120°60° and 120°.

The opposite angles of a parallelogram are congruent.

So, the angles of the parallelogram will be 60°,120°60°,120°, 60° and 120°60° and 120°.

Page No 62:

Question 5:

Diagonals of a parallelogram intersect each other at point O. If AO = 5, BO = 12 and AB = 13 then show that □□ABCD is a rhombus. 

ANSWER:

In △△AOB,

AO = 5 cm

OB = 12 cm

AB = 13 cm

5, 12 and 13 form a Pythagorean triplet.

Thus, △△AOB is a right angle triangle, right angled at O. 

ABCD is a parallelogram. 

So, diagonals bisect each other. 

⇒⇒AO = OC = 5 cm

Also, OB = OD = 12 cm.

Thus, in parallelogram ABCD, diagonals bisect at right angles.

Hence, ABCD is a rhombus. 

Page No 62:

Question 6:

In the given figure, □□PQRS and □□ABCR are two parallelograms. If  ∠∠P = 110∘110° then find the measures of  all angles of □□ABCR.

ANSWER:

In □□PQRS, 

∠∠P = 110∘110° 

We know that opposite angles of a parallelogram are congruent.

So, ∠∠P = ∠∠R = 110∘110° 

In □□ABCR,

∠∠R =∠∠B = 110∘110°        (Opposite angles of a parallelogram are congruent)

Interior angles on the same side of the transversal are supplementary.

So, 

∠R+∠A=180°⇒110°+∠A=180°⇒∠A=180°−110°⇒∠A=70°∠R+∠A=180°⇒110°+∠A=180°⇒∠A=180°-110°⇒∠A=70°

  And ∠∠A =∠∠C = 110°°. 

Page No 62:

Question 7:

In the given figure, □□ABCD is a parallelogram. Point E is on the ray AB such that BE = AB then prove that line ED bisects seg BC at point F.

ANSWER:

□□ABCD is a parallelogram

So, AD || CB

⇒⇒AD || BF

Given: AB = BE so, B is the midpoint of AE. 

By converse of mid-point theorem,

F is the midpoint of DE. So, DF = FE

In △△EBF and △△DCF,

DF = FE                         (Proved above)

DC = BE                        (Since DC = AB and AB = BE)

∠∠FDC = ∠∠FEB             (Alternate interior angles of the parallel lines AE and CD)

Thus, △△EBF ≅≅ △△DCF     (SAS congruency)

Therefore, FB = FC             (CPCT)

Hence, ED bisects seg BC at F.    

 

Page No 67:

Question 1:

In the given figure, □□ABCD is a parallelogram, P and Q are midpoints of side AB and DC respectively, then prove □□APCQ is a parallelogram.

ANSWER:

□□ABCD is a parallelogram,

AB ≅≅ CD and AB || CD

P and Q are the mid points of AB and CD respectively. 

So, AP ≅≅ CQ and AP || CQ

Thus, □□APCQ is also a parallelogram.  

Page No 67:

Question 2:

Using opposite angles test for parallelogram, prove that every rectangle is a parallelogram.

ANSWER:

Let ABCD be a rectangle. 

∠∠A = ∠∠B = ∠∠C = ∠∠D = 90°90°.

For any quadrilateral to be a parallelogram, pair of opposite angles should be congruent. 

In rectangle ABCD, 

∠∠A = ∠∠C =  90°90°

∠∠B = ∠∠D = 90°90°

Thus, rectangle ABCD is a paralleogram.

Page No 67:

Question 3:

In the given figure, G is the point of concurrence of medians of Δ∆DEF. Take point H on ray DG such that D-G-H and DG = GH, then prove that

□□GEHF is a parallelogram.

ANSWER:

G is the point of concurrence of the medians of Δ∆DEF.

Let the point where the median divides EF into two equal parts be A. 

Thus, EA = AF.                     .....(1)

we know that the point of concurrence of the medians, divides each median in the ratio 2 : 1.

So, let DG = 2x  and GA = x

Given that DG = GH

So, GA = AH = x

Thus, point A dividess EF and GH into two equal parts. 

Hence, □□GEHF is a parallelogram as the diagonals EF and GH bisect each other. 

 

Similar questions