Math, asked by pdharmagouddharmagou, 5 months ago

prepare tablee
work sheet
6

values for the following polygon
als
Ople) -22 150p)-2°+3x +266). 2.
Oply) = x 23-5-6

Answers

Answered by armyblinkriyahere
10

Answer :

Gravitational force of attraction between the two bodies is 16.675 × 10⁻¹⁴ N.

Explanation :

Given :

Mass of the two spheres, m₁ = m₂ = 500 g or 0.5 kg

Distance of seperation between them, d = 1 m.

Universal gravitation constant, G = 6.67 × 10⁻¹¹ N m² kg⁻²

To find :

Gravitational force of attraction between the two bodies, g = ?

Knowledge required :

Formula for Gravitational force of attraction :

\boxed{\sf{g = G\dfrac{m_{1}m_{2}}{d^{2}}}}

g=G

d

2

m

1

m

2

Where,

g = Acceleration due to gravity

m₁ = Mass of the body

m₂ = Mass of the body

d = Distance of seperation between the two bodies.

Solution :

By using the formula for Gravitational force of attraction and substituting the values in it, we get :

\begin{gathered}:\implies \sf{g = G\dfrac{m_{1}m_{2}}{d^{2}}} \\ \\ :\implies \sf{g = 6.67 \times 10^{-11} \times \dfrac{0.5 × 0.5}{1^{2}}} \\ \\ :\implies \sf{g = 6.67 \times 10^{-11} \times 0.5 × 0.5} \\ \\ :\implies \sf{g = 6.67 \times 10^{-11} \times 0.5^{2}} \\ \\ :\implies \sf{g = 6.67 \times 10^{-11} \times 0.25} \\ \\ :\implies \sf{g = 6.67 \times 10^{-11} \times 2.5 × 10^{-3}} \\ \\ :\implies \sf{g = 16.675 \times 10^{[-11 + (-3)]}} \\ \\ :\implies \sf{g = 16.675 \times 10^{-14}} \\ \\ \boxed{\therefore \sf{g = 16.675 \times 10^{-14}\:N}} \\ \\ \end{gathered}

:⟹g=G

d

2

m

1

m

2

:⟹g=6.67×10

−11

×

1

2

0.5×0.5

:⟹g=6.67×10

−11

×0.5×0.5

:⟹g=6.67×10

−11

×0.5

2

:⟹g=6.67×10

−11

×0.25

:⟹g=6.67×10

−11

×2.5×10

−3

:⟹g=16.675×10

[−11+(−3)]

:⟹g=16.675×10

−14

∴g=16.675×10

−14

N

Therefore,

Gravitational force of attraction between the two bodies, g = 16.675 × 10⁻¹⁴ N.

Similar questions