Math, asked by nausheen42, 3 months ago

Presently Ram's uncle is 16 years older than Ram. 8 years after his uncle age will be twice as his age. Find the present age of Ram and his uncle (With the help of graph)​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \:Let \: present \: age \: of \: -\begin{cases} &\sf{Ram \: be \: x \: years} \\ &\sf{Ram \: uncle \: be \: y \: years} \end{cases}\end{gathered}\end{gathered}

According to statement,

  • Ram's uncle is 16 years older than Ram.

\rm :\longmapsto\:y - x = 16 -  -  - (1)

After 8 years,

\begin{gathered}\begin{gathered}\bf \:Let  \: age \: of \: -\begin{cases} &\sf{Ram \: be \: x + 8 \: years} \\ &\sf{Ram \: uncle \: be \: y + 8 \: years} \end{cases}\end{gathered}\end{gathered}

According to statement,

  • Ram uncle age be twice the Ram age

\rm :\longmapsto\:y + 8 = 2(x + 8)

\rm :\longmapsto\:y + 8 = 2x + 16

\rm :\longmapsto\:y - 2x = 16 - 8

\rm :\longmapsto\:y - 2x = 8 -  -  - (2)

Now,

we have two linear equations

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \: y - x = 16

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \: y - 2x = 8

Consider,

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \: y - x = 16

1. Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:y - 0 = 16

\bf\implies \:y = 16

2. Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:0 - x = 16

\bf\implies \:x =  -  \: 16

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 16 \\ \\ \sf  - 16 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 16) & (- 16 , 0)

➢ See the attachment graph. (Red color line)

Now,

Consider,

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \: y - 2x = 8

1. Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:y - 2 \times 0 = 8

\bf\implies \:y = 8

2. Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:0 - 2x = 8

\bf\implies \:x =  - 4

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 8 \\ \\ \sf  - 4 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 8) & (- 4 , 0)

➢ See the attachment graph. (Purple color line)

So, From graph, we concluded that the two lines intersect at (8, 24).

\begin{gathered}\begin{gathered}\bf \:Hence \: present \: age \: of \: -\begin{cases} &\sf{Ram \: be \: 8\: years} \\ &\sf{Ram \: uncle \: be \: 24 \: years} \end{cases}\end{gathered}\end{gathered}

Attachments:
Similar questions