Math, asked by MiniDoraemon, 2 months ago

Previous year Question of jee mains
Chapter:- application and derivatives​

Attachments:

Answers

Answered by shivvakumar
3

Answer:

9

Step-by-step explanation:

Given equation

sinx4+1−sinx1=a    ....(1)

f(x)=sinx4+1−sinx1

f′(x)=cosx((1−sinx)21−sin2x4)

=cosxsin2x(1−sinx)2(2−sinx)(3sinx−2)

For maxima or minima, f′(x)=0

⇒sinx=2(not possible) , sinx=32 and cosx=0⇒x=2π

⇒x=sin−132

f(sin−132)=6+3=9

f(0+)→

⇒a=9   (by (1))

Answered by ridhya77677
6

Answer:

 \frac{4}{ \sin x}  +  \frac{1}{ 1 - \sin x}

→ \frac{4(1 -  \sin x) + \sin x }{ \sin x (1 -  \sin x) }  =  \alpha

→ \frac{4 -3 \sin x  }{ \sin x -  { \sin }^{2} x }  =  \alpha

→4 -3 \sin x =  \alpha \sin x -  \alpha  { \sin }^{2} x

→ \alpha   { \sin }^{2} x - ( \alpha  + 3) \sin x + 4 = 0

 \sin x =  \frac{  \alpha  + 3± \sqrt{ {( \alpha  + 3)}^{2} - 4.4 \alpha  } }{2 \alpha }  \\  =   \frac{ \alpha  + 3± \sqrt{ { \alpha }^{2} + 9 + 6 \alpha  - 16 \alpha  } }{2 \alpha }  \\  =  \frac{ \alpha  + 3± \sqrt{ { \alpha }^{2} - 10 \alpha  + 9 } }{2 \alpha }  \\  =  \frac{ \alpha  + 3± \sqrt{( \alpha  -9)( \alpha   - 1)} }{2 \alpha }

Now, for sinx to be real,,

\sqrt{( \alpha  -9)( \alpha   - 1)} = 0

→( \alpha  -9)( \alpha   - 1) = 0

 →\alpha  = 9, 1

putting value of α in the value of sinx,,

 \sin x =  \frac{9 + 3}{2 \times 9}  =  \frac{2}{3} €(0 ,1)

and

 \sin x =   \frac{1 + 3}{2  \times 1}  =  \frac{4}{2}  = 2 \: which \: is \: not \: possible.

So,

 \alpha  = 9 \: is \: the \: minimum \: value \: for  (0,π/2)

Similar questions