Math, asked by MiniDoraemon, 10 hours ago

Previous year Question of jee mains
Chapter:- Function​

Attachments:

Answers

Answered by ridhya77677
6

Answer:

f(x) =  { \sin}^{ - 1} ( \frac{ |x|  + 5}{ {x}^{2}  + 1 } )

For Domain,,

+1 0 and

 - 1 \leqslant ( \frac{ |x|  + 5}{ {x}^{2}  + 1 } )  \leqslant 1

→\frac{ |x|  + 5}{ {x}^{2}  + 1 }  \geqslant  - 1

→ |x|  + 5 \geqslant  -  {x}^{2}  - 1

→  {x}^{2}  +  |x|  +6 = 0

let |x| = t

→ {t}^{2}  + t + 6 = 0

discriminant = 1 - 24 < 0

here, x is not real.

also,

→\frac{ |x|  + 5}{ {x}^{2}  + 1 }  \leqslant     1

→ |x|  + 5   \leqslant  {x}^{2}  +   1

→ {x}^{2}  -  |x|  - 4  \geqslant  0

let |x| = t

→ {t}^{2}  - t - 4   \geqslant  0

→t =   \frac{ - ( - 1) ±  \sqrt{ {( - 1)}^{2}  - 4 \times 1 \times ( - 4)} }{2  \times 1}  \\  =  \frac{1  ± \sqrt{1 + 16} }{2}  \\  =  \frac{1± \sqrt{17} }{2}

→|x| = (1+√17)/2 , (1-√17)/2

since,

 \frac{1 -  \sqrt{17} }{2} \:  is \: negative \: and  \: |x|  \: does \: not \: give \: negative \: value.

So, it will be neglected.

→ |x|  =  \frac{ \sqrt{17}  + 1}{2}

x = ± \frac{ \sqrt{17}  + 1 }{2}

by wavy curve method,

we will get ,

Domain = ( - , -(√17 + 1)/2 ] U [ (√17 + 1)/2,∞ )

then,

a = (17 + 1)/2

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {sin}^{ - 1}{\bigg(\dfrac{ |x|  + 5}{ {x}^{2}  + 1} \bigg) }

We know,

\boxed{ \sf{ \: {sin}^{ - 1}x \: is \: defined \: when \:  - 1 \leqslant x \leqslant 1}}

So,

For domain of f(x) to be defined,

\rm :\longmapsto\: - 1 \leqslant \dfrac{ |x|  + 5}{ {x}^{2}  + 1} \leqslant 1

\rm :\longmapsto\:As \:  {x}^{2} + 1 > 0 \:  \forall \: x \:  \in \: real

So,

\rm :\longmapsto\: - ( {x}^{2} + 1) \leqslant  |x| + 5 \leqslant  {x}^{2} + 1

Now, Subtracting 5 from each term, we get

\rm :\longmapsto\: - {x}^{2}  - 1 - 5 \leqslant  |x| + 5 - 5 \leqslant  {x}^{2} + 1 - 5

\rm :\longmapsto\: - {x}^{2}  - 6 \leqslant  |x| \leqslant  {x}^{2}  - 4

So, 2 cases arises.

Case - 1

\rm :\longmapsto\: - {x}^{2}  - 6 \leqslant  |x|

\rm :\longmapsto\: 0 \leqslant  {x}^{2}  +  |x| + 6

\rm :\longmapsto\:   {x}^{2}  +  |x| + 6 \geqslant 0

can be rewritten as

\rm :\longmapsto\:   { |x| }^{2}  +  |x| + 6 \geqslant 0

Now, its a quadratic in | x |.

So, Let we check its Discriminant.

\rm :\longmapsto\:Discriminant \:  =  {b}^{2} - 4ac = 1 - 24 =  - 23

As Discriminant, D < 0 and coefficient of x^2 > 0.

\bf\implies \:\:   {x}^{2}  +  |x| + 6  &gt; 0

Hence, true for all real values of x.

Now,

Consider,

Case - 2

\rm :\longmapsto\: |x| \leqslant  {x}^{2}  - 4

\rm :\longmapsto\:   {x}^{2} -  |x|  - 4 \geqslant 0

can be rewritten as

\rm :\longmapsto\:   { |x| }^{2} -  |x|  - 4 \geqslant 0

Let we first find the roots of

\rm :\longmapsto\:   { |x| }^{2} -  |x|  - 4  =  0 \: using \: quadratic \: formula

\rm :\longmapsto\: |x| = \dfrac{ - ( - 1) \:  \pm \:  \sqrt{ {( - 1)}^{2}  - 4( - 4)(1)} }{2(1)}

\rm :\longmapsto\: |x| = \dfrac{1 \:  \pm \:  \sqrt{ 17} }{2}

So,

\rm :\longmapsto\:   { |x| }^{2} -  |x|  - 4 \geqslant 0

can be rewritten in factorization form as

\rm :\longmapsto\:{\bigg( |x|  -  \dfrac{1 +  \sqrt{17} }{2} \bigg) }{\bigg( |x| - \dfrac{1 -  \sqrt{17} }{2}  \bigg) } \geqslant 0

We know, if a and b are two positive real numbers, such that a < b and

\boxed{ \sf{ \:(x - a)(x - b) \geqslant 0 \implies \: x \leqslant a \: or \: x \geqslant b}}

So, using this

\rm :\longmapsto\: |x| \leqslant \dfrac{1 - \sqrt{17} }{2} \:  \: or \:  \:  |x| \geqslant \dfrac{1 +  \sqrt{17} }{2}

Now,

\rm :\longmapsto\: |x| \leqslant \dfrac{1 - \sqrt{17} }{2} \:  \: rejected \: as \:  |x| &lt; 0

So, we have

\rm :\longmapsto\: |x| \geqslant \dfrac{1 +  \sqrt{17} }{2}

\rm :\implies\:x \leqslant  -  \: \dfrac{1 +  \sqrt{17} }{2} \:  \: or \:  \: x \geqslant \dfrac{1 +  \sqrt{17} }{2}

\rm\implies\:x \in \: ( -  \infty ,-  \: \dfrac{1 +  \sqrt{17} }{2}\bigg] \cup \: \bigg[\dfrac{1 +  \sqrt{17} }{2}, \infty )

As it is given that

\rm :\longmapsto\:x \:  \in \: ( -  \infty , -  \: a] \:  \cup \: [a, \:  \infty )

So, On comparing above two, we get

\bf :\longmapsto\:a = \dfrac{1 +  \sqrt{17} }{2}

Therefore,

  • Option (c) is correct.
Similar questions