Math, asked by MiniDoraemon, 2 months ago

Previous year Question of jee mains

mathamatics shift :1
24 feb 2021​

Attachments:

Answers

Answered by ridhya77677
4

Answer:

Answer in the attachment.

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

➢ There are 6 Indians and 8 foreigners.

➢ Now, we have to find the number of committees with atleast 2 Indians and number of foreigners is twice the number of Indians.

➢ So, Following three cases arises :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Indians & \bf foreigners \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 2 & \sf 4 \\ \\ \sf 3 & \sf 6 \\ \\ \sf 4 & \sf 8 \end{array}} \\ \end{gathered}

So,

1. Number of ways in which 2 Indians and 4 foreigners can be selected from 6 Indians and 8 foreigners is

\rm \:  =  \:  \:^{6}C_{2}  \: \times  \: ^{8}C_{4}

\rm \:  =  \:  \:\dfrac{6!}{2! \: (6 - 2)!}  \times \dfrac{8!}{4! \: (8 - 4)!}

\rm \:  =  \:  \:\dfrac{6 \times 5 \times 4!}{2 \times 1 \times  \: 4!}  \times \dfrac{8 \times 7 \times 6 \times 5 \times 4!}{4 \times 3 \times 2 \:  \times 4!}

\rm \:  =  \:  \:15 \times 70

\rm \:  =  \:  \:1050

2. Number of ways in which 3 Indians and 6 foreigners can be selected from 6 Indians and 8 foreigners is

\rm \:  =  \:  \:^{6}C_{3}  \: \times  \: ^{8}C_{6}

\rm \:  =  \:  \:\dfrac{6!}{3! \: (6 - 3)!}  \times \dfrac{8!}{6! \: (8 - 6)!}

\rm \:  =  \:  \:\dfrac{6 \times 5 \times 4 \times 3!}{3 \times 2 \times  \:3!}  \times \dfrac{8 \times 7 \times 6!}{6!  \times \: 2 \times 1}

\rm \:  =  \:  \:20 \times 28

\rm \:  =  \:  \:560

3. Number of ways in which 4 Indians and 8 foreigners can be selected from 6 Indians and 8 foreigners is

\rm \:  =  \:  \:^{6}C_{4}  \: \times  \: ^{8}C_{8}

\rm \:  =  \:  \:\dfrac{6!}{4! \: (6 - 4)!}  \times \dfrac{8!}{8! \: (8 - 8)!}

\rm \:  =  \:  \:\dfrac{6 \times 5 \times 4!}{4! \times  \: 2 \times 1}   \times 1

\rm \:  =  \:  \:15

Hence,

➢ Total number of ways in which the number of committees with atleast 2 Indians and number of foreigners is twice the number of Indians is

\rm \:  =  \:  \:1050 + 560 + 15

\bf \:  =  \:  \:1625

Hence, Option (1) is correct

Additional Information :-

\boxed{ \sf{ \:^{n}C_{r} =  \frac{n}{r}  \:  \: ^{n - 1}C_{r - 1}}}

\boxed{ \sf{ \:^nC_ r \:  +  \: ^nC_ {r - 1} =  \: ^{n + 1}C_r}}

\boxed{ \sf{ \:\dfrac{^nC_ r}{^nC_{r - 1}}  = \dfrac{n - r + 1}{r}}}

\boxed{ \sf{ \:^nC_ 0 \:  =  \: ^nC_ n \:  = 1}}

\boxed{ \sf{ \:^nC_ r =  \frac{n!}{r! \: (n - r)!}}}

Similar questions