Math, asked by MiniDoraemon, 1 month ago

Previous year Question of jee mains

mathamatics shift :1
24 feb 2021 ​

Attachments:

Answers

Answered by ridhya77677
4

Answer:

The value of first expansion is 0

and value of second exapnsion is 2¹³-14

hence,

the answer is 0+2¹³-14

= 2¹³-14

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Solution-}}

We know,

\rm :\longmapsto\:In \: Binomial \: expansion \: of \:  {(1 + x)}^{n}, \: we \: have

\boxed{\rm{^nC_ 0 + ^nC_ 1 + ^nC_ 2 +  -  -  -  + ^nC_ n =  {2}^{n}}}

\boxed{\rm{^nC_ 0  -  ^nC_ 1 + ^nC_ 2 +  -  -  -  {( - 1)}^{n}  \: ^nC_ n =  0}}

\boxed{ \rm{ \:^nC_ 0 = ^nC_ 2 = ^nC_ 4 -  -  -  = ^nC_ 1 + ^nC_ 3 + ^nC_ 5 +  -  -  -  =  {2}^{n - 1}}}

Also, we know that

\boxed{ \sf{ \:^nC_ r \:  =  \:  \frac{n}{r} \:  \: ^{n - 1}C_{r - 1}}}

Now,

Let's solve the problem now!!

Consider,

\rm :\longmapsto\:^{14}C_1 + ^{14}C_3 + ^{14}C_5 +  -  -  -  + ^{14}C_{11}

\rm \:  = \:^{14}C_1 + ^{14}C_3 + ^{14}C_5 + -  -  + ^{14}C_{11} + ^{14}C_{13} - ^{14}C_{13}

\rm \:  =( \:^{14}C_1 + ^{14}C_3 + ^{14}C_5 + -  -  + ^{14}C_{11} + ^{14}C_{13}) - ^{14}C_{13}

\rm \:  =  \:  {2}^{14 - 1} - ^{14}C_1 \:  \:  \:   \:  \:  \purple{\{ \because \: ^{14}C_{13} = ^{14}C_1 \}}

\rm \:  =  \: {2}^{13} - 14

Hence,

\bf :\longmapsto\:^{14}C_1 + ^{14}C_3 + ^{14}C_5 + -- + ^{14}C_{11} =  {2}^{13} - 14

Now, Consider

\rm :\longmapsto\: - ^{15}C_1 + 2.^{15}C_2 - 3.^{15}C_3 +  -  -   - 15.^{15}C_{15}

Now,

Above terms can be rewritten as

\rm :\longmapsto\:^{15}C_1 = \dfrac{15}{1} \: ^{14}C_0

\rm :\longmapsto\:^{15}C_2 = \dfrac{15}{2} \: ^{14}C_1

\rm :\longmapsto\:^{15}C_3 = \dfrac{15}{3} \: ^{14}C_2

.

.

.

\rm :\longmapsto\:^{15}C_{15} = \dfrac{15}{15} \: ^{14}C_{14}

So,

\rm :\longmapsto\: - ^{15}C_1 + 2.^{15}C_2 - 3.^{15}C_3 +  -  -   - 15.^{15}C_{15}

\rm = - 15.^{14}C_0 + 2.  \dfrac{15}{2} \: ^{14}C_1 - 3.\dfrac{15}{3}^{14}C_2 +  -  -  - 15.^{14}C_{14}

\rm \:  =  \:  -15 \:  ^{14}C_0 + 15.^{14}C_1 - 15.^{14}C_2 -  - 15.^{14}C_{14}

\rm \:  =  \:  -15( \:  ^{14}C_0  -^{14}C_1  + ^{14}C_2 -  - -  + ^{14}C_{14})

\rm \:  =  \:  \: - 15 \times 0

\rm \:  =  \:  \: 0

Hence,

\rm :\longmapsto\: - ^{15}C_1 + 2.^{15}C_2 - 3.^{15}C_3 +  -  -   - 15.^{15}C_{15} = 0

So,

\rm :\longmapsto\:- ^{15}C_1 + 2.^{15}C_2 - 3.^{15}C_3 +  -  -   - 15.^{15}C_{15} + ^{14}C_1 + ^{14}C_3 + ^{14}C_5 +  -  -  -  + ^{14}C_{11}

\bf \:  =  \: {2}^{13} - 14

Hence, Option (2) is correct.

Similar questions