Math, asked by abhilashgadipudi2282, 1 month ago

principe solution of coso=1-√3÷2√2

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cos\theta  = \dfrac{1 -  \sqrt{3} }{2 \sqrt{2} }

can be rewritten as

\rm :\longmapsto\:cos\theta \:   = -  \: \bigg[ \dfrac{\sqrt{3}  - 1}{2 \sqrt{2} } \bigg]

Let first evaluate the value of

\rm :\longmapsto\:\dfrac{ \sqrt{3}  - 1}{2 \sqrt{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} }{2 \sqrt{2} }  - \dfrac{1}{2 \sqrt{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} }{2}  \times \dfrac{1}{ \sqrt{2} }  - \dfrac{1}{2}  \times \dfrac{1}{ \sqrt{2} }

\rm \:  =  \: cos\bigg[\dfrac{\pi}{6} \bigg]cos\bigg[\dfrac{\pi}{4} \bigg]  + sin\bigg[\dfrac{\pi}{6} \bigg]sin\bigg[\dfrac{\pi}{4} \bigg]

We know,

\boxed{ \tt{ \: cosx \: cosy \:  -  \: sinx \: siny \:  =  \: cos(x + y) \: }}

So, using this identity, we get

\rm \:  =  \: cos\bigg[\dfrac{\pi}{6}  + \dfrac{\pi}{4} \bigg]

\rm \:  =  \: cos\bigg[\dfrac{2\pi + 3\pi}{12} \bigg]

\rm \:  =  \: cos\bigg[\dfrac{5\pi}{12} \bigg]

So,

\rm \implies\:\boxed{ \tt{\: cos\bigg[\dfrac{5\pi}{12} \bigg] =  \frac{ \sqrt{3}  - 1}{2 \sqrt{2} }  \: }}

Thus, the given Trigonometric expression can be rewritten as

\rm :\longmapsto\:cos\theta \:   = -  \:cos \bigg[ \dfrac{5\pi}{12} \bigg]

We know,

\boxed{ \tt{ \:  - cosx = cos(\pi - x) = cos(\pi + x) \: }}

So, using this, the above can be rewritten as

\rm :\longmapsto\:cos\theta \:   =   \:cos \bigg[\pi -  \dfrac{5\pi}{12} \bigg] \:  or \:cos \bigg[\pi + \dfrac{5\pi}{12} \bigg]

\rm :\longmapsto\:cos\theta \:   =   \:cos \bigg[\dfrac{12\pi - 5\pi}{12} \bigg]  \: or \:cos \bigg[\dfrac{12\pi + 5\pi}{12} \bigg]

\rm :\longmapsto\:cos\theta \:   =   \:cos \bigg[\dfrac{7\pi}{12} \bigg]  \: or \:cos \bigg[\dfrac{17\pi}{12} \bigg]

\bf\implies \:\theta  = \dfrac{7\pi}{12} \:  \: or \:  \:  \dfrac{17\pi}{12}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}


anindyaadhikari13: Nice presentation.
Similar questions