Math, asked by mitanshu2306, 3 months ago

prive that Cos^2A (1+tan^2A)=1​

Attachments:

Answers

Answered by Sayantana
1

Answer:

To remember:

\ 1 + tan^{2}(\theta)\;= sec^{2}(\theta)

\ cos(\theta) = \dfrac{1}{sec(\theta)}

solution:

\implies{\sf{cos^{2}\theta.(1+tan^{2}(\theta)}}

\implies{\sf{cos^{2}\theta.sec^{2}(\theta)}}

\implies{\sf{\dfrac{1}{sec^{2}(\theta)}.sec^{2}(\theta)}}

\implies{\bf{1}}

Henced proved!

---------------------------------

hope it helps!

Answered by MuskanJoshi14
1

Step-by-step explanation:

Answer:

☆To remember:

\ 1 + tan^{2}(\theta)\;= sec^{2}(\theta)

\ cos(\theta) = \dfrac{1}{sec(\theta)}

☆solution:

\implies{\sf{cos^{2}\theta.(1+tan^{2}(\theta)}}

\implies{\sf{cos^{2}\theta.sec^{2}(\theta)}}

\implies{\sf{\dfrac{1}{sec^{2}(\theta)}.sec^{2}(\theta)}}

\implies{\bf{1}}

Henced proved!

---------------------------------

♧hope it helps!♧

muskan Joshi

Similar questions