Math, asked by hyinterbuilt208, 10 months ago

Probe that (1+cotx-cosecx)(1+tanx+secx)=2

Answers

Answered by Anonymous
3

\huge\mathfrak{Answer:}

Given:

  • We have been given some trigonometric ratios: (1 + cotx - cosecx ) (1 + tanx + secx ).

To Prove:

  • We need to prove that (1 + cotx - cosecx ) (1 + tanx + secx ) = 2.

Proof:

The given trignometric ratio is

(1 + cotx - cosecx ) (1 + tanx + secx ).

Taking LHS, We have

 \sf{(1 +  \cot(x)  -  \cos(x) )(1 +  \tan(x)  +  \sec(x) )}

 \sf{(1 +  \dfrac{ \cos(x) }{ \sin(x) } -  \dfrac{1}{ \sin(x) } ) (1 +  \dfrac{ \sin(x) }{ \cos(x) } +  \frac{1}{ \cos(x) } ) }

 \sf{ (\dfrac{ \sin(x )+  \cos(x)  - 1  }{ \sin(x) })}(  \dfrac{ \cos(x)  +  \sin(x) + 1}{ \cos(x) }

 \sf \dfrac{(sin\ x\ +\ cos\ x)^2\ -\ 1}{sinx \times cosx}

 \sf{\dfrac{\sin ^2 x \: + \: \cos ^2 x \: + \: 2 \: \sin x \cos x \: - \: 1}{\sin x \cos x}}

 \sf{\dfrac{1 \: + \: 2 \cancel{\sin x \cos x}  \:  - \: 1}{\cancel{\sin x \cos x}}}

 \sf{2 = 2}

LHS = RHS

Hence proved!!

Answered by Anonymous
4

★ Question ★

→ (1+cotx-cosecx)(1+tanx+secx)=2

To prove

→ (1+cotx-cosecx)(1+tanx+secx)=2

Solution ↑ (refer to the attachment.)

Attachments:
Similar questions