Math, asked by jaiswalvarsha1980, 6 months ago

Probe that. tan^2 theta/(sec theta+1)=sec theta-1​

Answers

Answered by spiderman2019
2

Answer:

Step-by-step explanation:

Tan²θ/Secθ + 1

=> Sec²θ - 1 / Secθ + 1     (∵ Sec²θ - Tan²θ = 1)

=> (Secθ + 1)(Secθ - 1) / Secθ + 1

=> Secθ - 1

=> R.H.S

Hence Proved.

Answered by Seafairy
130

Question :

 \mathsf{prove \:  that }   \: \frac {\tan^2 \theta}{ \sec\theta + 1 } =  \sec \theta - 1

Solution :

    \implies\frac{ \tan^2\theta }{\sec\theta + 1}

 \implies \frac{ \sec^2 \theta - 1}{ \sec\theta + 1 }  \:  \:  \:  \:  \:  \:  \: ( \because\sec^2 \theta -  \tan^2\theta = 1)

 \implies \:  \frac{( \sec\theta + 1)( \sec\theta - 1) }{( \sec\theta + 1)}       \:  \:  \:  \:  \:   ( \because \:  ({a}^{2} - {b}^{2} ) = (a + b)(a - b))

 \implies (\sec\theta - 1)\implies RHS

</p><p>\mathtt{Hence  \: proved}

Similar questions