Problem :: Use the graphical method to solve the following
LP Problem:
Maximize Z=3x1+2x2
Subjective to the restrictions
2x1+x2=40
x1+x2=24
2x+3x₂=60
Answers
Answered by
0
Answer:
Step-by-step explanation:
Maximise:
Z = c1x1 + c2x2 + · · · + cnxn
such that
a11x1 + a12x2 + · · · + a1nxn ≤ b1
a21x1 + a22x2 + · · · + a2nxn ≤ b2
.
.
.
.
.
.
.
.
.
am1x1 + am2x2 + · · · + amnxn ≤ bm
and x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.
Similar questions