Math, asked by skorah406, 5 days ago

process + check please​

Attachments:

Answers

Answered by xxblackqueenxx37
26

Soluction :-

 \sf \: we \: have

 \sf \:  =  \frac{3}{4} (7x - 1) -  \: \left ( \begin{array}{ccc} 2x -  \frac{1 - x}{2}  \end{array}\right )  = x +  \frac{3}{2}  \\

 \sf \:  \:  = \left ( \begin{array}{ccc} \frac{21x}{4} -  \frac{3}{4}    \end{array}\right )  -  \: \left ( \begin{array}{ccc}  \frac{4x - 1 + x}{2}  \end{array}\right )  = x +  \frac{3}{2}  \\

 \sf \:  \:  = \left ( \begin{array}{ccc}  \frac{21x}{4}  -  \frac{3}{4}  \end{array}\right )  -  \: \left ( \begin{array}{ccc}  \frac{5x - 1}{2}  \end{array}\right )  = x +  \frac{3}{2}  \\

 \sf \:  \: =  \left ( \begin{array}{ccc}   \frac{21x}{4}  -  \frac{3}{4} \end{array}\right )  -  \: \left ( \begin{array}{ccc} \frac{5x}{2}   -  \frac{1}{2}  \end{array}\right )  = x +  \frac{3}{2}  \\

 \sf \:  =  \frac{21x}{4}  -  \frac{3}{4}  -  \frac{5x}{2}  +  \frac{1}{2} = x +  \frac{3}{2}   \\

 \sf \:  =  \frac{21x - 10x}{4}  -  \frac{3}{4}  +  \frac{1}{2}  = x +  \frac{3}{4}  \\

 \sf \:  =  \frac{11x}{4}  - x =  \frac{3}{4}  -  \frac{1}{2}  +  \frac{3}{2}  \\

 \sf \:  =  \:  \frac{11x - 4x}{4}  =  \frac{3 - 2 + 6}{4}  \\

 \sf \:   = \frac{7x}{4}  =  \frac{7}{4}  \\

 \sf \:  = 1

 \sf \fbox \red{ans \:  =  \: x = 1} \\

checking :-

\sf \:= \frac{3}{4} \: (7x-1)-(2x- \frac{1-x}{2})= \: x+ \frac{3}{2} \\

 \sf \: = \frac{3}{4} \: (7 \times 1-1)-(2 \times\: 1 \: - \frac{1-1}{2}) \\

 \sf \: = \frac{9}{2} \:- 2\: = \: \frac{5}{2} \\

 = \frac{5}{2} = \frac{5}{2} \\

 \sf \:  = 1

 \sf \fbox \red{ans \:  =  \: x = 1} \\

Observe that the left-hand side is equal to the right-hand side.

Hence, x = 1 is a solution to the given equation.

hence verified!!

Similar questions