process in phosphoric acid fuel cells
Answers
Answered by
1
Phosphoric acid fuel cells (PAFC) are a type of fuel cell that uses liquid phosphoric acid as an electrolyte. They were the first fuel cells to be commercialized. Developed in the mid-1960s and field-tested since the 1970s, they have improved significantly in stability, performance, and cost. Such characteristics have made the PAFC a good candidate for early stationary applications
Answered by
1
Phosphoric-acid fuel cell

Scheme of a phosphoric acid fuel cell
Phosphoric acid fuel cells (PAFC) are a type of fuel cell that uses liquid phosphoric acid as an electrolyte. They were the first fuel cells to be commercialized. Developed in the mid-1960s and field-tested since the 1970s, they have improved significantly in stability, performance, and cost. Such characteristics have made the PAFC a good candidate for early stationary applications.[
1]Electrode reactionsEdit
Anode reaction: 2H2(g) → 4H+ + 4e‾
Cathode reaction: O2(g) + 4H+ + 4e‾ → 2H2O
Overall cell reaction: 2 H2 + O2 → 2H2O
DesignEdit
Electrolyte is highly concentrated or pure liquid phosphoric acid (H3PO4) saturated in a silicon carbide matrix (SiC). Operating range is about 150 to 210 °C. The electrodes are made of carbon paper coated with a finely dispersed platinum catalyst.

Scheme of a phosphoric acid fuel cell
Phosphoric acid fuel cells (PAFC) are a type of fuel cell that uses liquid phosphoric acid as an electrolyte. They were the first fuel cells to be commercialized. Developed in the mid-1960s and field-tested since the 1970s, they have improved significantly in stability, performance, and cost. Such characteristics have made the PAFC a good candidate for early stationary applications.[
1]Electrode reactionsEdit
Anode reaction: 2H2(g) → 4H+ + 4e‾
Cathode reaction: O2(g) + 4H+ + 4e‾ → 2H2O
Overall cell reaction: 2 H2 + O2 → 2H2O
DesignEdit
Electrolyte is highly concentrated or pure liquid phosphoric acid (H3PO4) saturated in a silicon carbide matrix (SiC). Operating range is about 150 to 210 °C. The electrodes are made of carbon paper coated with a finely dispersed platinum catalyst.
Similar questions