Math, asked by cutelixkhushi3702, 9 months ago

Product of digits of a 2­digit number is 12. If we add 36 to the number, the new number obtained is a number formed by interchange of the digits. What is the number.

A) 62 B) 34 C) 26 D) 43

Answers

Answered by TheVenomGirl
3

AnSwer:-

  • c) 26

ExPlanation:-

 \sf \: Let \:  the \:  units  \: place  \: digit  \: be \:  x

 \sf \: tens  \: place \:  digit \:  be \:  y

 \sf \: Number = 10y + x(as \: per  \: given \: info) \\  \sf \: Interchanged  \: Number = 10x + y

{ \bigstar{ \underline{According \:  to  \: the \:  Question,}}}

 \longmapsto \sf \: xy = 12 \\  \longmapsto \sf \: x= 12/y ..... (i) \\  \longmapsto\sf \:  10y + x + 36 = 10x + y\\  \longmapsto \sf \: 10y + x - 10x - y =  - 36 \\  \longmapsto \sf \: 9y - 9x = - 36 \\ \longmapsto \sf \:  9(y - x) = - 36 \\  \longmapsto\sf \:  y - x = - 36/9 \\  \longmapsto\sf \:  y - x = - 4 ....(ii)

Substitute eqn (1) value in (2),

 \longmapsto \sf \: y - 12/y = - 4 \\   \longmapsto \sf \:{y}^{2} - 12/y = - 4 \\  \longmapsto \sf \:{y}^{2}+ 4y - 12 = 0 \\ \longmapsto \sf \: {y}^{2} + 6y - 2y -12 = 0 \\ \longmapsto \sf \: y(y + 6) - 2(y + 6) = 0 \\  \longmapsto \sf \:(y + 6)(y - 2) = 0 \\ \longmapsto \sf \:y =  - 6, 2 (Neglect \: negative \: sign) \\ \longmapsto \sf \:y = 2

 \sf \: Putting \:  y \: value \:  in \:  Eqn (1), we  \: get \\  \longmapsto \sf \: x = 12/y \\ \longmapsto \sf \: x = 12/2 \\ \longmapsto \sf \:x = 6

 \sf \therefore \: Number =  \\  \sf\implies \: 10y + x  \\ \sf \implies \: 10\times2 + 6  \\ \sf \implies \: 20 + 6  \\  \sf\implies \: 26

Hence, the number is 26.

Similar questions