Math, asked by anveshathepro, 6 months ago

product of two rational number is -9/20 if one of them is -2/-15 then another rational number is​

Answers

Answered by Anonymous
37

{\large{\bold{Question::-}}}

product of two rational number is -9/20 if one of them is -2/-15 then another rational number ?

{\large{\bold{given::-}}}

  • Product of two numbers =  \dfrac{-9}{20}

  • One of them =  \dfrac{-2}{-15}

{\large{\bold{To\:Find::-}}}

  • Find another rational number .

{\large{\bold{Solution::-}}}

Let another rational number be x.

A.T.Q.

             ⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{- 2}{ - 15}  \times x =  \dfrac{ - 9}{20}

              ⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x =  \dfrac{ - 9}{20}   \times  (\dfrac{ - 15}{ - 2} )

               ⟼   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x =   \dfrac{ - 27}{ - 8}

               ⟼    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x =   \dfrac{ 27}{ 8}

Verification :-

                   x =  \dfrac{27}{8}

Given equation :-

        ⟼   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{- 2}{ - 15}  \times x =  \dfrac{ - 9}{20}

          ⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{- 2}{ - 15}  \times  \dfrac{27}{8}   =  \dfrac{ - 9}{20}

___________

By multiplying ➝   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{- 2}{ - 15}  \times  \dfrac{27}{8}

We get :- \dfrac{ - 9}{20}

Answered by Anonymous
47

Given

  • Product of two rational numbers = \dfrac{-9}{20}
  • One rational number = \dfrac{-2}{-15}\: or\: \dfrac{2}{15}

To find

  • Another rational number.

Solution

  • Let the another rational number be x.

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{2}{15} × x = \dfrac{-9}{20}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{2x}{15} = \dfrac{-9}{20}}

\tt:\implies\: \: \: \: \: \: \: \: {20 × 2x = 15 × (-9)}

\tt:\implies\: \: \: \: \: \: \: \: {40x = -135}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{-135}{40}}

\tt:\implies\: \: \: \: \: \: \: \: {x = \dfrac{-27}{8}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions