production of two consecutive positive integers is 156. represent it in the form of quadratic expression
Answers
Answer:
let x and x+1 be the integers
let x and x+1 be the integersx(x+1)=156
let x and x+1 be the integersx(x+1)=156x^2+x=156
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=13
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=1312 and 13 are the integers
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=1312 and 13 are the integersx+13=0
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=1312 and 13 are the integersx+13=0x=-13
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=1312 and 13 are the integersx+13=0x=-13x+1=-12
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=1312 and 13 are the integersx+13=0x=-13x+1=-12-12 and -13 is also a solution
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=1312 and 13 are the integersx+13=0x=-13x+1=-12-12 and -13 is also a solutionusing arithmetic...
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=1312 and 13 are the integersx+13=0x=-13x+1=-12-12 and -13 is also a solutionusing arithmetic...√156=12.48999
let x and x+1 be the integersx(x+1)=156x^2+x=156x^2+x-156=0156=2*2*3*13(2*2*3)*13=12*13 and 12*13=156factor(x+13)(x-12)=156x-12=0x=12 and x+1=1312 and 13 are the integersx+13=0x=-13x+1=-12-12 and -13 is also a solutionusing arithmetic...√156=12.48999truncate the number to get 12 and then 13 and then -12 and -13
Step-by-step explanation:
Hope it helps you follow me guys for more answers and mark it as brainliest.