Math, asked by sumitsaini8751, 1 year ago

Proe that (cosec theta - sin sin theta) (sec theta - cos theta) = 1/tan theta + cot theta

Answers

Answered by Pitymys
0

Here  LHS=(\csc \theta-\sin \theta)(\sec \theta-\cos \theta) .

We know,

 \sec \theta = \frac{1}{\cos \theta} \\<br />\csc \theta = \frac{1}{\sin \theta} \\<br />\sin^2 \theta+\cos^2 \theta=1

Using the above identities,

 LHS=(\frac{1}{\sin \theta}-\sin \theta)(\frac{1}{\cos \theta}-\cos \theta)  \\<br />LHS=\frac{(1- \sin^2 \theta)(1- \cos ^2 \theta)}{\sin \theta\cos \theta} \\<br />LHS=\frac{\sin^2 \theta \cos ^2 \theta}{\sin \theta\cos \theta} \\<br />LHS=\sin \theta\cos \theta

 LHS=\sin \theta\cos \theta\\<br />LHS=\frac{\sin \theta \cos \theta}{1} \\<br />LHS=\frac{\sin \theta \cos \theta}{\sin^2 \theta+\cos^2 \theta} \\<br />LHS=\frac{1}{\frac{\sin^2 \theta }{\sin \theta \cos \theta} +\frac{\cos^2 \theta}{\sin \theta \cos \theta}}   \\<br />LHS=\frac{1}{\tan \theta+\cot \theta}=RHS<br />

Similar questions