Science, asked by khushi191211, 9 days ago

project on solar system 6 7 pages in english​

Answers

Answered by jigyasha6695
0

Explanation:

Answer:

System of linear equations has no solution.

Step-by-step explanation:

Given pair of linear equations is

\begin{gathered}\sf \: 3x - 2y = 3 \\ \\ \end{gathered}

3x−2y=3

and

\begin{gathered}\sf \: 6x - 4y = 7 \\ \\ \end{gathered}

6x−4y=7

In matrix form, can be represented as

\begin{gathered}\rm \: \bigg[ \begin{matrix}3& - 2 \\ 6& - 4 \end{matrix} \bigg] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c} 3\\7\end{array}\right] \\ \\ \end{gathered}

[

3

6

−2

−4

][

x

y

]=[

3

7

]

where,

\begin{gathered}\rm \: A = \bigg[ \begin{matrix}3& - 2 \\ 6& - 4 \end{matrix} \bigg] \\ \\ \end{gathered}

A=[

3

6

−2

−4

]

\begin{gathered}\sf \: B = \left[\begin{array}{c} 3\\7\end{array}\right] \\ \\ \end{gathered}

B=[

3

7

]

\begin{gathered}\sf \: X = \left[\begin{array}{c}x\\y\end{array}\right] \\ \\ \end{gathered}

X=[

x

y

]

Now, Consider

\begin{gathered}\sf \: |A| \\ \\ \end{gathered}

∣A∣

\begin{gathered}\qquad\sf \: = \: \bigg | \begin{matrix}3& - 2 \\ 6& - 4 \end{matrix} \bigg | \\ \\ \end{gathered}

=

3

6

−2

−4

\begin{gathered}\qquad\sf \: = \: - 12 - ( - 12) \\ \\ \end{gathered}

=−12−(−12)

\begin{gathered}\qquad\sf \: = \: - 12 + 12 \\ \\ \end{gathered}

=−12+12

\begin{gathered}\qquad\sf \: = \: 0 \\ \\ \end{gathered}

=0

This implies, system of equations is either consistent or inconsistent.

Now, Consider cofactors of matrix A

\begin{gathered}\sf \: A_{11} = {( - 1)}^{1 + 1}(- 4) = - 4 \\ \\ \end{gathered}

A

11

=(−1)

1+1

(−4)=−4

\begin{gathered}\sf \: A_{12} = {( - 1)}^{1 + 2}(6) = - 6 \\ \\ \end{gathered}

A

12

=(−1)

1+2

(6)=−6

\begin{gathered}\sf \: A_{21} = {( - 1)}^{2+ 1}( - 2) = 2 \\ \\ \end{gathered}

A

21

=(−1)

2+1

(−2)=2

\begin{gathered}\sf \: A_{22} = {( - 1)}^{2+ 2}(3) = 3 \\ \\ \end{gathered}

A

22

=(−1)

2+2

(3)=3

Thus,

\begin{gathered}\sf \: adjA = \bigg[ \begin{matrix}A_{11} & A_{21} \\ A_{12} & A_{22} \end{matrix} \bigg] \\ \\ \end{gathered}

adjA=[

A

11

A

12

A

21

A

22

]

\begin{gathered}\sf\implies \sf \: adjA = \bigg[ \begin{matrix}- 4&2 \\ - 6& 3 \end{matrix} \bigg] \\ \\ \end{gathered}

⟹adjA=[

−4

−6

2

3

]

Now, Consider

\begin{gathered}\sf \: (adjA)B \\ \\ \end{gathered}

(adjA)B

\begin{gathered}\sf \: = \: \bigg[ \begin{matrix} - 4& 2 \\ - 6& 3 \end{matrix} \bigg]\left[\begin{array}{c} 3\\7\end{array}\right] \\ \\ \end{gathered}

=[

−4

−6

2

3

][

3

7

]

\begin{gathered}\sf \: = \: \left[\begin{array}{c} - 12 + 14\\ - 18 + 21\end{array}\right] \\ \\ \end{gathered}

=[

−12+14

−18+21

]

\begin{gathered}\sf \: = \: \left[\begin{array}{c} 2\\ 3\end{array}\right] \\ \\ \end{gathered}

=[

2

3

]

So,

\begin{gathered}\sf\implies \sf \: (adjA)B \: \ne \: 0\\ \\ \end{gathered}

⟹(adjA)B

=0

\begin{gathered}\sf\implies \sf \: System\:of\:equations\:has\:no\:solution\\ \\ \end{gathered}

⟹Systemofequationshasnosolution

Similar questions