Math, asked by ROARING, 2 months ago

Proof:
cos 3 theta sin 2 theta - cos 4 theta sin theta= (cos 2 theta)/ cosec theta​

Answers

Answered by assingh
27

Topic :-

Trigonometry

To Prove :-

\cos3\theta\sin2\theta-\cos4\theta\sin\theta=\dfrac{\cos2\theta}{\csc\theta}

Proof :-

Solving LHS,

\cos3\theta\sin2\theta-\cos4\theta\sin\theta

Multiply and Divide by 2,

\dfrac{2}{2}\left[\cos3\theta\sin2\theta-\cos4\theta\sin\theta\right]

\dfrac{1}{2}\left[2\cos3\theta\sin2\theta-2\cos4\theta\sin\theta\right]

Using 2cosAsinB = sin(A + B) - sin(A - B),

\dfrac{1}{2}\left[\{\sin(3\theta+2\theta)-\sin(3\theta-2\theta)\}-\{\sin(4\theta+\theta)-\sin(4\theta-\theta)\}\right]

\dfrac{1}{2}\left[\{\sin(5\theta)-\sin(\theta)\}-\{\sin(5\theta)-\sin(3\theta)\}\right]

\dfrac{1}{2}\left[\sin(5\theta)-\sin(\theta)-\sin(5\theta)+\sin(3\theta)\right]

\dfrac{1}{2}\left[\sin(5\theta)-\sin(5\theta)+\sin(3\theta)-\sin(\theta)\right]

\dfrac{1}{2}\left[0+\sin(3\theta)-\sin(\theta)\right]

\dfrac{1}{2}\left[\sin(3\theta)-\sin(\theta)\right]

\bold{Using\:\sin A-\sin B=2\cos\left( \dfrac{A+B}{2}\right)\sin\left( \dfrac{A-B}{2}\right),}

\dfrac{1}{2}\left[2\cos\left( \dfrac{3\theta+\theta}{2}\right)\sin\left(\dfrac{3\theta-\theta}{2}\right)\right]

\dfrac{1}{\not{2}}\left[\not{2}\cos\left( \dfrac{4\theta}{2}\right)\sin\left(\dfrac{2\theta}{2}\right)\right]

\left[\cos\left( 2\theta\right)\sin\left(\theta\right)\right]

\cos\left( 2\theta\right)\cdot\dfrac{1}{\csc\left(\theta\right)}

\left(\because \sin\theta=\dfrac{1}{\csc\theta}\right)

\dfrac{\cos2\theta}{\csc\theta}

RHS,

\dfrac{\cos 2\theta}{\csc\theta}

We observe that LHS = RHS.

Hence, Proved !!


MystícPhoeníx: Miraculous :D
Asterinn: Nice!
Similar questions