Proof equation of motion.
Answers
First, consider a body moving in a straight line with uniform acceleration. Then, let the initial velocity be u, acceleration be a, time period be t, velocity be v, and the distance travelled be S.
The equation of motions derivation can be done in three ways which are:
Derivation of Motion by Calculus Method.
hope it helps you mate.
please thank and ♏ark my answer as brainliest.
@ ANUSHA ❤✌
Answer:
Derivation of the Equations of Motion
v = u + at
This equation only talks about the acceleration, time, the initial and the final velocity. Let us assume a body that has a mass “m” and initial velocity “u”. Let after time “t” its final velocity becomes “v” due to uniform acceleration “a”. Now we know that:
Acceleration = Change in velocity/Time Taken
Therefore, Acceleration = (Final Velocity-Initial Velocity) / Time Taken
Hence, a = v-u /t or at = v-u
Therefore, we have: v = u + at
v² = u² + 2as
We have, v = u + at. Hence, we can write t = (v-u)/a
Also, we know that, Distance = average velocity × Time
Therefore, for constant acceleration we can write: Average velocity = (final velocity + initial velocty)/2 = (v+u)/2
Hence, Distance (s) = [(v+u)/2] × [(v-u)/a]
or s = (v² – u²)/2a
or 2as = v² – u²
or v² = u² + 2as
s = ut + ½at²
Let the distance be “s”. We know that
Distance = Average velocity × Time. Also, Average velocity = (u+v)/2
Therefore, Distance (s) = (u+v)/2 × t
Also, from v = u + at, we have:
s = (u+u+at)/2 × t = (2u+at)/2 × t
s = (2ut+at²)/2 = 2ut/2 + at²/2
or s = ut +½ at²
hope it helps
please mark as brainliest