Physics, asked by santanubosss, 1 year ago

proof expression of time period for simple pendulum ?​

Answers

Answered by Anonymous
62

\huge\bf{\pink{\mid{\underline{\overline{your\:answer}}}\mid}}

\star{\mathtt{\pink{\underline{Simple \: pendulum-}}}} If a heavy point mass is suspended by a weightless, inextensible and perfectly fexible string from a rigid support, then this arrangement is called a Simple pendulum.

\large{\underline{\underline{\mathbf{Expression\: for\: time\: period}}}}

\large\bf{\underline{Method-I \: (force \: method) }}

For small angular displacement,

sin

so that,

F = -mg sin

=> -mg

then,

 =  >  \:  \:  - ( \frac{ mg}{l} )y

 =  >  \:  \:  - ky

 =  >  \:  \: k =  \frac{mg}{l}

( y = l )

\bold{thus, \: the\: time\: period\: of\: simple\: pendulum\: is, }

 =  >  \: t = 2\pi \sqrt{ \frac{m}{k} }

\large\boxed{t=2\pi\sqrt{\frac{l}{g}}}

_________________________________________

\large\bf{\underline{Method-II \: (Torque\: method) }}

Bob of pendulum moves along the arc of circle in vertical plane. motion involved is angular and oscillatory, where restoring torque is provided by gravitational force.

t = -(mg)( l sin ∅)

\rm{\underline{negative\:sign\:show\:opposite\:direction\:of\:torque}}

t = -mg l∅

If angular displacement is small,then

Sin

I = ( moment of inertia of bob)

i \alpha  =  - mgl

Now,

(-mgl / I)

\bold{compairing\:with\:standard\:diffrential\:equation\:of\:angular\:SHM}

therefore,

\large\boxed{t=2\pi\sqrt{\frac{l}{g}}}

_________________________________________

Attachments:

Anonymous: great ✌
1Angel25: Amazing answer❤
1Angel25: wello ..!!
Anonymous: Well Defined....❤
1Angel25: Thanks
1Angel25: xD
Anonymous: xD
Anonymous: Very nice :D
Answered by Anonymous
71

\huge{\mathfrak{\underline{\underline{Solution:-}}}}

\sf{Let\:t\propto m^{a}\:l^{b}\:g^{c}}

Where a, b and c are the power of m (mass), l (length) and g (acceleration due to gravity).

\sf{or\:t=k\:m^{a}\:l^{b}\:g^{c}\:\:\:\:\:.......(1)}

Where k is dimension less constant of proportionality.

Where k is dimension less constant of proportionality.Writing the dimensions in the terms of M, L and T on each side of equation (1), we get..

\sf{\big[M^{0}\:L^{0}\:T^{1}\big]=M^{a}\:L^{b}\:\big(LT^{-2}\big)^{c}}

\sf{=M^{a}\:L^{b+c}\:T^{-2c}}

Applying the principal of homogeneity of dimension, we get..

\sf{a=0\:\:\:\:\:..........(2)}

\sf{b+c=0\:\:\:\:\:..........(3)}

\sf{or,\:c=\frac{-1}{2}\:\:\:\:\:..........(4)}

Putting the value of c in equation (3), we get

\sf{b+\bigg(\frac{-1}{2}\bigg)=0}

\sf{or,\:b=\frac{1}{2}}

Now putting the value of a, b and c in equation (1), we get

\sf{t=k\:m^{0}\:l^{1/2}\:g^{-1/2}}

\sf{or,\:t=k\sqrt{\frac{l}{g}}}

Using other method, we calculate the value of k =

2\pi

\sf{\boxed{\boxed{So,\:t=2\pi \sqrt{ \frac{l}{g}}}}}


Anonymous: Thanks ❤️
tina9961: osm aayuu
Anonymous: Thanks ❤️
Kusumsahu7: Superb Answer
Anonymous: Thanks ❤️
1Angel25: Amazing answer sista❤
Anonymous: Øsm as well ☺️
Similar questions