Math, asked by superkundu, 9 months ago

proof for sin^(-1)x-sin^(-1)y ​

Answers

Answered by sshailshetty
0

Answer:

LHS = RHS

Step-by-step explanation:

Let: sin  

−1

(x)=A,sin  

−1

(y)=B,sin  

−1

(z)=C  

On taking sin both sides in each of them we get:

⇒x=sinA,y=sinB,z=sinC ........ [As sin(sin  

−1

(x))=x]

Given that: sinx+siny+sinz=π  

⇒A+B+C=π

A+B=π−C ..... (1)  

To prove:  x  

1−x  

2

 

​  

+y  

1−y  

2

 

​  

+z  

1−z  

2

 

​  

=2xyz

 

LHS:

=sinA  

1−sin  

2

A

​  

+sinB  

1−sin  

2

B

​  

+sinC  

1−sin  

2

C

​  

 

As we know, {  

1−sin  

2

A

​  

=cosA}  , LHS simplifies to:  

=sinAcosA+sinBcosB+sinCcosC  

=  

2

2sinAsinA+2sinBcosB+2sinCcosC

​  

 ...  Multiply and Divide by 2  

As we know, 2sinAcosA=sin(2A) so LHS:  

=  

2

sin2A+sin2B+2sinCcosC

​  

 

=  

2

2sin(A+B)cos(A−B)+2sinCcosC

​  

              [Identity:sinx+siny=2sin(  

2

x+y

​  

)cos(  

2

x−y

​  

)]

=  

2

2sin(π−C)cos(A−B)+2sinCcosC

​  

 ..... From (1)

=  

2

2sinC(cos(A−B)+cos(π−(A+B)))

​  

              [Identity:sin(π−C)=sinC]  

2

2sinC(cos(A−B)−cos((A+B)))

​  

                  [Identity:cos(π−x)=−cosx]  

2

2sinC(2sin(A)sin(B))

​  

                               [Identity:cosy−cosx=2sin(  

2

x+y

​  

)sin(  

2

x−y

​  

)]  

=2sinAsinBsinC  

=2xyz

LHS = RHS

Hence proved

Similar questions