Math, asked by Anonymous, 3 months ago

Proof it by Rationalisation.

 \blue{ \frac{1}{ \sqrt{2} - \sqrt{3} - \sqrt{5} } +  \frac{1}{ \sqrt{2} + \sqrt{3} - \sqrt{5} } =  \pink{ \frac{1}{ \sqrt{2} } }}

✿ Pls don't Spam ✅
✿ Pls help ☹️
✿ Well explained with process
✿ Thank Youu ❤️⭐​

Answers

Answered by StormEyes
12

Solution:-

To Prove:-

\sf \dfrac{1}{\sqrt{2}-\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}=\dfrac{1}{\sqrt{2}}

Taking LHS,

\sf = \dfrac{1}{\sqrt{2}-\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}

Rationalising the denominator of the first fraction.

\sf = \dfrac{1}{\left(\sqrt{2}-\sqrt{3}\right)-\sqrt{5}}

\sf = \dfrac{1}{\left(\sqrt{2}-\sqrt{3}\right)-\sqrt{5}}\times \dfrac{\left(\sqrt{2}-\sqrt{3}\right)+\sqrt{5}}{\left(\sqrt{2}-\sqrt{3}\right)+\sqrt{5}}

\sf = \dfrac{1\left(\left(\sqrt{2}-\sqrt{3}\right)+\sqrt{5}\right)}{\left(\left(\sqrt{2}-\sqrt{3}\right)-\sqrt{5}\right)\left(\left(\sqrt{2}-\sqrt{3}\right)+\sqrt{5}\right)}

Use (a + b)(a - b) = a² - b² to simplify.

\sf = \dfrac{\left(\sqrt{2}-\sqrt{3}\right)+\sqrt{5}}{\left(\sqrt{2}-\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}

\sf = \dfrac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{\left(\sqrt{2}-\sqrt{3}\right)^{2}-5}

Use (a - b)² = a² - 2ab + b² to expand the expression.

\sf = \dfrac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{2-2\sqrt{6}+3-5}

\sf = \dfrac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{-2\sqrt{6}}

Rationalise it further.

\sf = -\dfrac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{2\sqrt{6}}

\sf = -\dfrac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{2\sqrt{6}}\times \dfrac{\sqrt{6}}{\sqrt{6}}

\sf = -\dfrac{\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\sqrt{6}}{2\sqrt{6}\sqrt{6}}

\sf = -\dfrac{\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\sqrt{6}}{12}

Rationalising the denominator of the second fraction.

\sf = \dfrac{1}{\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}}

\sf = \dfrac{1}{\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}}\times \dfrac{\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}}

\sf = \dfrac{1\left(\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}\right)}{\left(\left(\sqrt{2}+\sqrt{3}\right)-\sqrt{5}\right)\left(\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}\right)}

Use (a + b)(a - b) = a² - b² to simplify.

\sf = \dfrac{\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}

\sf = \dfrac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}\right)^{2}-5}

Use (a + b)² = a² + 2ab + b² to expand the expression.

\sf = \dfrac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2+2\sqrt{6}+3-5}

\sf = \dfrac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2\sqrt{6}}

Rationalise it further.

\sf = \dfrac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{2\sqrt{6}}\times \dfrac{\sqrt{6}}{\sqrt{6}}

\sf = \dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\sqrt{6}}{2\sqrt{6}\sqrt{6}}

\sf = \dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\sqrt{6}}{12}

Now, add both the fractions.

\sf = -\dfrac{\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\sqrt{6}}{12}+\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\sqrt{6}}{12}

Distribute \sf \sqrt{6} through the parentheses.

\sf = -\dfrac{\sqrt{12}-\sqrt{18}+\sqrt{30}}{12}+\dfrac{\sqrt{12}+\sqrt{18}+\sqrt{30}}{12}

Write both the numerators above a common denominator.

\sf = \dfrac{-\left(\sqrt{12}-\sqrt{18}+\sqrt{30}\right)+\sqrt{12}+\sqrt{18}+\sqrt{30}}{12}

\sf = \dfrac{-\sqrt{12}+\sqrt{18}-\sqrt{30}+\sqrt{12}+\sqrt{18}+\sqrt{30}}{12}

\sf = \dfrac{\sqrt{18}+\sqrt{18}}{12}

\sf = \dfrac{2\sqrt{18}}{12}

\sf =\dfrac{\sqrt{18}}{6}

Simplifying the radical.

\sf =\dfrac{3\sqrt{2}}{6}

\sf =\dfrac{\sqrt{2}}{2}

Taking RHS,

\sf =\dfrac{1}{\sqrt{2}}

Rationalising the denominator.

\sf =\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}}

\sf =\dfrac{1\left(\sqrt{2}\right)}{\sqrt{2}\sqrt{2}}

\sf =\dfrac{\sqrt{2}}{2}

LHS = RHS

Hence, proved!

Similar questions