Math, asked by Mister360, 3 months ago

Proof it
\boxed{\rm log_n1=0}

Answers

Answered by ғɪɴɴвαłσℜ
13

\huge{\rm log_n1=0}

Proof :-

\huge{\rm log_n1=0}

Since,  {a}^{0}  = 1

It's inverse,

0 = Log 1 n

n > 0 ,

 \dfrac{ {n}^{1}  }{ {n}^{1} }

 {n}^{1 - 1}

 {n}^{0}  = 0

Hence, \huge{\rm log_n1=0}

We know,

Log 1 = 0

It means that the logarithm of 1 is always 0. It doesn't depend on the base of the logarithm. No matter it may be a,b,c,d..

It's because any number to the power 0 is 0.

_____________________________________

\boxed{\boxed{\begin{minipage}{4.2cm}\circ\sf\:\ln 1=0\\\circ\sf\:\ln e=1\\\circ\sf\:\ln x=y\leftrightarrow e^y=x\\\circ\sf\:e^{\ln x}=x,\:x>0\\\circ\sf\:\ln(e^x)=x,\:x\in\mathbb{\large R}\\\circ\sf\:\ln(xy)=\ln x+\ln y\\\circ\sf\:\ln(x/y)=\ln x-\ln y\\\circ\sf\:\ln(x^r)=r\ln x\\\circ\sf\:\ln x=log_e\:x\end{minipage}}}

Similar questions