Proof of converse of Pythagoras theorem with state ment!
Answers
Answer:
Hey dear...
here is your answer..! b
Please Refer to the Attachment..
The converse of the Pythagorean Theorem is: If the square of the length of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle. That is, in ΔABC, if c2=a2+b2 then ∠C is a right triangle, ΔPQR being the right angle.
In a triangle, if the square of one side is equal to the sum of square of other two sides then prove that the triangle is right angled triangle.
________________________
Given : AC² = AB² + BC²
To prove : ABC is a right angled triangle.
Construction : Draw a right angled triangle PQR such that, angle Q = 90°, AB = PQ, BC = QR.
Proof : In triangle PQR,
Angle Q = 90° ( by construction )
Also,
PR² = PQ² + QR² ( By using Pythagoras theorem )...(1)
But,
AC² = AB² + BC² ( Given )
Also, AB = PQ and BC = QR ( by construction )
Therefore,
AC² = PQ²+ QR²....(2)
From eq (1) and (2),
PR² = AC²
So, PR = AC
Now,
In ∆ABC and ∆PQR,
AB = PQ ( By construction )
BC = QR ( By construction )
AC = PR ( Proved above )
Hence,
∆ABC is congruent to ∆PQR by SSS criteria.
Therefore, Angle B = Angle Q ( By CPCT )
But,
Angle Q = 90° ( By construction )
Therefore,
Angle B = 90°
Thus, ABC is a right angled triangle with Angle B = 90°
____________________
Hence proved!