Math, asked by sumonajhantukha, 7 months ago

proof of Pythagoras theorem​

Answers

Answered by Rsingh29
1
Proof of pythagoras theorem is
AC^2=AB^2 +BC^2
Answered by RISH4BH
26

»ɢɪᴠᴇɴ :-

  • A right angled triangle ∆ ABC .
  • The triangle is right angled at A .

»ᴛᴏ ʀ :-

  • BC² = AB² + AC² that is the sum of square of base and perpendicular is equal to the square of hypontenuse .

»ɴsʀɪɴ :-

  • From vertex C drop a perpendicular on side BC of ∆ ABC . Mark it as point D .

»ʀғ :-

\underline{\textsf{\textbf{\red{\purple{$\dag$}\:\:Figure:-}}}}

\setlength{\unitlength}{1 cm}\begin{picture}(15,8)\put(0,0){\line(1,0){5}}\put(0,5){\line(0,-1){5}}\put(5,0){\line(-1,1){5}}\put(2.5,2.6){\line(-1,-1){2.5}}\put(0.36,0){\line(0,1){0.36}}\put(0.36,0.36){\line(-1,0){0.36}}\put(0,5.3){$\bf C $}\put(0,-0.3){$\bf A $}\put(5,-0.3){$\bf B$}\put(2.7,2.7){$ \bf D $}\put(2.8,2.2){\line(-1,-1){0.36}}\put(2.45,1.85){\line(-1,1){0.36}}\end{picture}

We will prove this Theorem using similarity of triangles . Here we will try to Prove ∆ABC \sim ∆ABD .

\underline{\textsf{\textbf{\purple{\red{$\dag$}\:\:In\:$\triangle$ \:ABC\:\&\:$\triangle$\:DBA:-}}}}

\qquad\qquad\red{\tt \leadsto \angle ADB=\angle BAC\:\purple{(each\:equal\:to\:90^{\circ})}}

\qquad\qquad\red{\tt \leadsto \angle ABC=\angle DBA\:\purple{(common)}}

\sf \therefore  \green{By\:AA\: similarity\: criterion}\:\\\sf \pink{\triangle ABC\:\sim\:\triangle DBA}

\underline{\sf\red{\mapsto} So\:now\:we\:can\:say\: that:-}

\tt:\implies \dfrac{BD}{AB}=\dfrac{AB}{BC}

\tt:\implies AB\times AB= \lgroup BC \times BD\rgroup

\boxed{\bf\red{\longmapsto}\:AB^2=BC\times BD }

_________________________________

\sf\orange{ Similarly \:we \:can \:prove\: that\: \triangle ABC\: \sim \triangle ADC.}

\tt:\implies \dfrac{CD}{AC}=\dfrac{AC}{BC}

\tt:\implies AC\times AC= \lgroup BC \times CD \rgroup

\boxed{\bf\red{\longmapsto}\:AB^2=BC\times CD }

_________________________________

\underline{\textsf{\textbf{\purple{\red{$\dag$}\:\: Adding\:both \:the\:\: equations:-}}}}

\tt:\implies AB^2+ AC^2=(BC\times BD)+(BC\times CD)

\tt:\implies AB^2+AC^2=BC(CD+BD)

\tt:\implies AB^2+AC^2=BC\times BC

\underset{\pink{\bf Pythagoras\: Theorem}}{\purple{\underbrace{\underline{\boxed{\red{\tt\longmapsto\:\:AB^2\:+\:AC^2\:=\:BC^2}}}}}}

Similar questions