Proof (sin7α×sin3α = sin²5α-sin²2α)
Answers
Answered by
0
Answer:
Since we know that,
sinC+sinD=2.sin(C+D)/2.cos(C-D)/2
& sinC-sinD=2.cos(C+D)/2.sin(C-D)/2
& 2sinA/2.cosA/2= sinA
Step-by-step explanation:
Given,
R.H.S.= sin²5a-sin²2a
=(sin5a+sin2a).(sin5a-sin2a)
=[2.sin(5a+2a)/2.cos(5a-2a)/2].[2.cos(5a+2a)/2.sin(5a-2a)/2]
=[2sin(7a/2).cos(3a/2)].[2cos(7a/2).sin(3a/2)]
=[2sin(7a/2).cos(7a/2)].[2sin(3a/2).cos(3a/2)]
=[sin2.(7a/2)].[sin2.(3a/2)]
=sin7a.sin3a
=L.H.S.
Hence proved.
Similar questions