proof (tan A + secA)^2 is equal to 1 + sin A/ 1 - sin A
Answers
Good Morning
Here Is Your Answer:-
To prove
(tan A + sec A)^2 = 1 + sin A / 1 - sin A
Proof:-
LHS:- 1 + sin A / 1 - sin A
RHS:- (tan A + sec A)^2
Then ,
RHS:- (tan A + sec A)^2 {tan A= sinA/
cosA}
= (sin A/ cos A + 1/cos A)^2
= ( 1+sin A/cos A )^2 {sec A = 1/cosA}
= (1 + sin A )^2 ÷( cos A )^2
= (1+sin A) (1+sin A)÷cos^2A
= (1+ sinA) (1+sinA)÷(1-sin^2A) {1-sin^2A=
a^2-b^2}
= ( 1+sinA) (1+sin A)÷ (1+sinA)(1-sinA)
= (1+sinA) / (1-sinA)=LHS
(proved)
So,It is proved that LHS=RHS
I Hope It will Help You
Answer:
RHS
RHS= (1-sinA)/(1+sinA)
RHS= (1-sinA)/(1+sinA)= (1-sinA)/(1+sinA) × (1-sinA)/(1-sinA) By Rationalization
RHS= (1-sinA)/(1+sinA)= (1-sinA)/(1+sinA) × (1-sinA)/(1-sinA) By Rationalization= (1-sinA)²/(1+sinA)(1-sinA)
RHS= (1-sinA)/(1+sinA)= (1-sinA)/(1+sinA) × (1-sinA)/(1-sinA) By Rationalization= (1-sinA)²/(1+sinA)(1-sinA)= (1-sinA)/(1+sinA) = LHS