Math, asked by Ado1, 1 year ago

proof that 1+sinA -cosA /1+sinA+cosA = tanA/2

Answers

Answered by sandeepakarunathilak
41

Sina=2sin(a/2) cos(a/2)

Cosa=1-sin^2(a/2)

Cosa=2cos(a/2) -1

Attachments:
Answered by pinquancaro
61

Answer and Explanation:

To prove : \frac{1+\sin A-\cos A}{1+\sin A+\cos A}=\tan (\frac{A}{2})

Proof :

Taking LHS,      

LHS=\frac{1+\sin A-\cos A}{1+\sin A+\cos A}

Using the trigonometry identities we can write,

1) \sin A=2\sin (\frac{A}{2})\cos (\frac{A}{2})

2) \cos A=2\cos^2(\frac{A}{2})-1

3) \cos A=1-2\sin^2(\frac{A}{2})

Applying these identities,

LHS=\frac{1+2\sin (\frac{A}{2})\cos (\frac{A}{2})-1+2\sin^2(\frac{A}{2})}{1+2\sin (\frac{A}{2})\cos (\frac{A}{2})+2\cos^2(\frac{A}{2})-1}

LHS=\frac{2\sin (\frac{A}{2})\cos (\frac{A}{2})+2\sin^2(\frac{A}{2})}{2\sin (\frac{A}{2})\cos (\frac{A}{2})+2\cos^2(\frac{A}{2})}

LHS=\frac{2\sin (\frac{A}{2})(\cos (\frac{A}{2})+\sin(\frac{A}{2}))}{2\cos (\frac{A}{2})(\sin (\frac{A}{2})+\cos(\frac{A}{2}))}

Cancel the like term,

LHS=\frac{\sin (\frac{A}{2})}{\cos (\frac{A}{2})}

LHS=\tan \frac{A}{2}

LHS=RHS

Hence proved.

Similar questions