proof that, 2as =v^2 - u^2
Answers
Answered by
2
This equation can be proved as follows:
v = u + at therefore t = (v-u)/a but s = ut + ½ at2 and so
s = ut + ½ a([v-u]/a)2 therefore: 2s = 2u(v-u)/a + (v2 – 2uv + u2)/a
So: 2as = 2uv – 2u2 + v2 – 2uv + u2 and so v2 = u2 + 2as
v = u + at therefore t = (v-u)/a but s = ut + ½ at2 and so
s = ut + ½ a([v-u]/a)2 therefore: 2s = 2u(v-u)/a + (v2 – 2uv + u2)/a
So: 2as = 2uv – 2u2 + v2 – 2uv + u2 and so v2 = u2 + 2as
tanishqa111:
thanks
Answered by
2
change in kinetic energy = 1/2 m v² - 1/2 m u²
Force on the body = m a
distance travelled = displacement = s
So energy conservation (work energy theorem)
1/2 m (v² - u²) = m a s
so 2as = v² - u²
============================
v² - u² = (v - u) ( v + u)
= a t (u + u + at)
= 2 a (u + 1/2 a t²)
= 2 a s
Force on the body = m a
distance travelled = displacement = s
So energy conservation (work energy theorem)
1/2 m (v² - u²) = m a s
so 2as = v² - u²
============================
v² - u² = (v - u) ( v + u)
= a t (u + u + at)
= 2 a (u + 1/2 a t²)
= 2 a s
Similar questions