Proof that :
• ( a + b )² = a² + 2ab + b²
No spam (=`ェ´=)
Answers
Answered by
1
(a+b)²
= (a+b)×(a+b)
= (a+b)(a+b)
= [a×(a+b)]+[b×(a+b)]
= [a(a+b)]+[b(a+b)]
= [{(a×a)+(a×b)}] + [{(b×a)+(b×b)}]
= [(a²)+(ab)] + [(ba)+(b²)]
= (a²)+(ab)+(ba)+(b²)
Since a×b = b×a (commutative property), ba = ab.
= (a²)+(ab)+(ab)+(b²)
= (a²)+(2×ab)+(b²)
= (a²)+(2ab)+(b²)
Answered by
5
Answer:
( a + b )² = a² + 2ab + b²
= a(a + b) + b(a + b)
= a² - ab + ba + b²
= a² + 2ab + b²
Similar questions