proof that any subring of a ring R is ring itself
Answers
Answered by
1
A ring is a nonempty set R with two binary operations (usually written as addition and multiplication) such that for all a, b, c ∈ R, (1) R is closed under addition: a + b ∈ R. (2) Addition is associative: (a + b) + c = a + (b + c). (3) Addition is commutative: a + b = b + a.
Answered by
2
Step-by-step explanation:
A ring is a nonempty set R with two binary operations (usually written as addition and multiplication) such that for all a, b, c ∈ R, (1) R is closed under addition: a + b ∈ R. (2) Addition is associative: (a + b) + c = a + (b + c). (3) Addition is commutative: a + b = b + a.
Similar questions