Math, asked by abdullahs540, 9 months ago

Proof that cosec theta minus cot theta whole square equal to 1 minus cos theta divided by 1 + cos theta

Answers

Answered by sourya1794
7

Correct Question :-

\rm\:{(cosec\theta-cot\theta)}{^2}=\dfrac{1-cos\theta}{1+cos\theta}

Solution :-

\rm\:LHS={(cosec\theta-cot\theta)}^{2}

\rm\longrightarrow\:\bigg(\dfrac{1}{sin\theta}-\dfrac{cos\theta}{sin\theta}\bigg)^2

\rm\longrightarrow\:\bigg(\dfrac{1-cos\theta}{sin\theta}\bigg)^2

\rm\longrightarrow\:\dfrac{(1-cos\theta)^2}{(si{n}^{2}\theta)}

\rm\longrightarrow\:\dfrac{(1-cos\theta)\:(1-cos\theta)}{(1-co{s}^{2}\theta)}

\rm\longrightarrow\:\dfrac{(1-cos\theta)(1-cos\theta)}{{(1)}^{2}-{(cos\theta)^2}}

\rm\longrightarrow\:\dfrac{(\cancel{1-cos\theta})(1-cos\theta)}{(\cancel{1-cos\theta})(1+cos\theta)}

\rm\longrightarrow\:\dfrac{1-cos\theta}{1+cos\theta}

\rm\:LHS=RHS

\rm\:Hence,proved

Some Trigonometry formula :-

  • sinθ . cosecθ = 1

  • cosθ . secθ = 1

  • tanθ . cotθ = 1

  • sin²θ + cos²θ = 1

  • sec²θ - tan²θ = 1

  • cosec² - cot² = 1
Similar questions