Proof that secA -1 /tanA =tanA/ secA+1
Answers
Answered by
0
Step-by-step explanation:
LHS
secA-1/tanA
={(1-cosA)/cosA}/(sinA/cosA)
=1-cosA/sinA
RHS
tanA/secA+1
=sinA/1+cosA
=sinA(1-cosA)/(1+cosA)(1-cosA)
=sinA(1-cosA)/sin²A
=1-cosA/sinA
LHS=RHS
Similar questions