PROOF THAT,
sin(A)+sin(B)-sin(C) = 4sin(A/2) . sin(B/2) . sin(C/2)
kvnmurty:
are these angles in a trianlge?
Answers
Answered by
2
Question is mentioned wrongly. it should be cos C/2 and not sin C/2.
A+B+C = 180
Sin A+ Sin B - Sin C = SIN A + Sin B - Sin (180 - (A+B) )
= SIN A + SIN B - SIN (A+B)
= SIN A + SIN B - SIN A COS B + COS A SIN B
= Sin A ( 1 - Cos B ) + Sin B (1 - Cos A)
= 2 Sin A/2 Cos A/2 * 2 Sin² B/2 + 2 Sin B/2 Cos B/2 * 2 Sin² A/2
= 4 Sin A/2 Sin B/2 [ sin B/2 Cos A/2 + Cos B/2 Sin A/2 ]
= 4 Sin A/2 COs B/2 Sin (B+A)/2
= 4 Sin A/2 Cos B/2 Sin (180 - C)/2
= 4 Sin A/2 Cos B/2 Cos C/2
A+B+C = 180
Sin A+ Sin B - Sin C = SIN A + Sin B - Sin (180 - (A+B) )
= SIN A + SIN B - SIN (A+B)
= SIN A + SIN B - SIN A COS B + COS A SIN B
= Sin A ( 1 - Cos B ) + Sin B (1 - Cos A)
= 2 Sin A/2 Cos A/2 * 2 Sin² B/2 + 2 Sin B/2 Cos B/2 * 2 Sin² A/2
= 4 Sin A/2 Sin B/2 [ sin B/2 Cos A/2 + Cos B/2 Sin A/2 ]
= 4 Sin A/2 COs B/2 Sin (B+A)/2
= 4 Sin A/2 Cos B/2 Sin (180 - C)/2
= 4 Sin A/2 Cos B/2 Cos C/2
Similar questions
Math,
8 months ago
Hindi,
8 months ago
Biology,
8 months ago
Environmental Sciences,
1 year ago
World Languages,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago